Empa Überlandstrasse 129 CH-8600 Dübendorf T +41 58 765 11 11 F +41 58 765 11 22 www.empa.ch

Flughafen Zürich AG Lärmmanagement 8058 Zürich-Flughafen

Flughafen Zürich

Fluglärmbelastung im Jahre 2015

Auftrags-Nr.: 5214.011975

Bericht-Nr.: 5214.011975

Auftraggeber: Flughafen Zürich AG, M. Bissegger

Anzahl Seiten: 24

Beilagen: 12 Karten (Format A4)

Technischer Anhang mit 21 Seiten

Die Verfasser: O. Schwab

B. Schäffer S. Plüss

Status: genehmigter Bericht

Dübendorf, 15. Juli 2016

Der Projektleiter:

Abteilung Akustik / Lärmminderung

Der Abteilungsleiter:

Dr. Beat Schäffer Kurt Eggenschwiler

Seite 2 von 24

Inhalt

1.	Auft	rag	3
2.	Umf	ang und Inhalt der Untersuchungen	4
	2.1.	Inhaltliche Systemabgrenzung	4
	2.2.	Zeitliche Systemabgrenzung	4
	2.3.	Räumliche Systemabgrenzung	4
3.	Grur	ndlagen und Methodik	5
	3.1.	Belastungsmasse und Berechnungsvorschriften	5
	3.2.	Berechnungsverfahren	8
	3.3.	Bewegungszahlen, Pisten- und Routenbelegung	12
	3.4.	Fluggeometrien	13
	3.5.	Quantifizierungen: Flächen der Grenzwertkurven und betroffene Personen	13
4.	Eing	abedaten für die Fluglärmberechnungen	14
	4.1.	Fluggeometrien	14
	4.2.	Akustische Quellendaten und Leistungssetzung	14
	4.3.	Flugbewegungszahlen	14
5.	Bere	chnungsergebnisse	16
	5.1.	Fluglärmkarten	16
	5.2.	Differenzen in den Grenzwertkurven bezüglich Vorjahr	17
	5.3.	Flächenausdehnung und Anzahl Betroffene über den Grenzwerten	17
	5.4.	Genauigkeit der Berechnungen	18
6.	Date	engrundlagen, Literatur, Begriffe und Abkürzungen	19
	6.1.	Datengrundlagen	19
	6.2.	Literatur	19
	6.3.	Verwendete Begriffe und Abkürzungen	20
7.	Verz	eichnis der Beilagen	23

Empa, Abteilung Akustik / Lärmminderung Seite 3 von 24
Auftraggeber: Flughafen Zürich AG Bericht-Nr. 5214.011975

1. Auftrag

Die Flughafen Zürich AG, vertreten durch Martin Bissegger, erteilte der Abteilung Akustik / Lärmminderung der Empa am 29.01.2016 den Auftrag, die Fluglärmbelastung des Flughafens Zürich für das Jahr 2015 zu berechnen. Die Berechnungen müssen nach den gesetzlichen Vorschriften erfolgen [17].

Die Fluglärmbelastung durch Grossflugzeuge wird wie für die Berechnungsjahre 2007 bis 2014 mit der *Full-Size-Methode* (*Full Single Flight Simulation*) berechnet, bei der alle verwertbaren Flugbahnen in die Simulation miteinbezogen werden. Dazu wird die neueste FLULA2-Version 004 verwendet [6], welche die Programmanpassungen gemäss Empfehlungen des Bundesamtes für Umwelt (BAFU) beinhaltet. Wie für das Berechnungsjahr 2014 [16] wird auch für das Berechnungsjahr 2015 der Quellendatensatz RC2012_01 verwendet. Die Lärmbelastung durch Kleinluftfahrzeuge wird im Gegensatz zur Belastung durch Grossflugzeuge nicht durch Simulation, sondern durch Hochrechnung der bestehenden Belastungsrechnung des Jahres 2010 [8] auf das Jahr 2015 ermittelt. Die Gesamtbelastung ergibt sich schliesslich durch Superposition der Belastungen durch Grossflugzeuge und Kleinluftfahrzeuge.

Empa, Abteilung Akustik / Lärmminderung Seite 4 von 24
Auftraggeber: Flughafen Zürich AG Bericht-Nr. 5214.011975

2. Umfang und Inhalt der Untersuchungen

2.1. Inhaltliche Systemabgrenzung

Der vorliegende Bericht beschreibt das Vorgehen bei der Berechnung der Fluglärmbelastung von Grossflugzeugen und Kleinluftfahrzeugen am Flughafen Zürich im Jahre 2015. Er enthält die technischen Grundlagen, die zur Berechnung massgeblichen Flugbetriebsdaten sowie die resultierenden Lärmbelastungen in Kartenform. Es werden insgesamt 5 neue separate Belastungsrechnungen durchgeführt: Belastung durch Grossflugzeuge während der Tages- und Nachtstunden (für die Zeit von 06 bis 22 Uhr, von 22 bis 23 Uhr, sowie von 23 bis 05 Uhr), Belastung durch Kleinluftfahrzeuge, sowie Belastung durch den Gesamtverkehr (Gross- und Kleinluftfahrzeuge) am Tag.

Im vorliegenden Bericht werden die gesetzlich relevanten Belastungsrechnungen (Lr_{tr} , Lr_{n2} , Lr_{n3} , Lr_{kr} , Lr_{g}) als Lärmbelastungskarten dargestellt. Daneben werden Karten erstellt, welche jeweils die Gebiete einer bestimmten Empfindlichkeitsstufe (ES II bis IV) sowie die zugehörigen Grenzbelastungskurven zeigen (ES I wird nicht dargestellt). Zusätzlich werden die Flächen der ES II bis IV kartographisch mit denjenigen des Vorjahres verglichen.

2.2. Zeitliche Systemabgrenzung

Gemäss Anhang 5 der Lärmschutz-Verordnung (LSV) wird der 24-Stunden-Tag in vier Betriebszeiten unterteilt: Tag von 06 bis 22 Uhr, erste Nachtstunde von 22 bis 23 Uhr, zweite Nachtstunde von 23 bis 24 Uhr sowie letzte Nachtstunde von 05 bis 06 Uhr [17]. Flüge zwischen 23 und 05 Uhr werden zur zweiten Nachtstunde gezählt. Die angegebenen Betriebszeiten sind jedoch nur für die Berechnung der Belastung durch Grossflugzeuge von Bedeutung. Dabei beträgt die Bezugsdauer T zur Berechnung des Mittelungspegels am Tag 16 Stunden und in den drei Nachtperioden jeweils eine Stunde. Bei Grossflugzeugen wird die Belastung pro Tag im Jahresmittel ausgewiesen. Für Kleinluftfahrzeuge bezieht sich die Belastung dagegen auf die zwei verkehrsreichsten Wochentage der sechs verkehrsreichsten Monate. Die Bezugsdauer T beträgt 12 Stunden.

2.3. Räumliche Systemabgrenzung

Das Berechnungsgebiet entspricht demjenigen der vorangegangenen Berechnungsjahre 2011 [10] bis 2014 [16]. Die Berechnungen werden innerhalb eines rechteckigen Gebiets mit einer West-Ost Ausdehnung von 88 Kilometern und einer Nord-Süd Ausdehnung von 84 Kilometern durchgeführt (Planviereck mit folgenden Schweizer Landeskoordinaten: südwestliche Ecke: 644'000 / 216'000; nordöstliche Ecke: 732'000 / 300'000). Für die Simulation mit FLULA2 wird das Gebiet in ein Gitter mit einer Maschenweite von 250m × 250 m unterteilt.

3. Grundlagen und Methodik

3.1. Belastungsmasse und Berechnungsvorschriften

3.1.1. Übersicht

Bei zivilen Flugplätzen, auf denen Grossflugzeuge verkehren, muss gemäss LSV Anhang 5 die Lärmbelastung von Grossflugzeugen und von Kleinluftfahrzeugen einzeln sowie gesamthaft ausgewiesen werden [17]. Als Kleinluftfahrzeuge gelten dabei Luftfahrzeuge mit einem höchstzulässigen Abfluggewicht von kleiner oder gleich 8'618 kg.

Als Mass für die Lärmbelastung verlangt die LSV den Beurteilungspegel *Lr*. Er setzt sich aus einer akustischen Grösse sowie Korrekturen zusammen. Als akustische Grösse kommt der Mittelungspegel *Leq* zur Anwendung. Er ist eine rein physikalische Grösse, welche die Schallenergien des Flugbetriebs abbildet. Die Korrekturen berücksichtigen dagegen den Störgrad resp. die Störwirkung der Flugzeuggeräusche.

Es sind Belastungsrechnungen getrennt für den Tag (Belastung als Lr_t) und die Nacht (Belastung als Lr_n) durchzuführen. Dabei werden sämtliche Bewegungen von Kleinluftfahrzeugen unabhängig von der effektiven Start- bzw. Landezeit der Beurteilungszeit "Tag" zugeordnet.

Der Beurteilungspegel Lr_t für die Lärmbelastung des Gesamtverkehrs am Tag berechnet sich aus der energetischen Addition des Teilbeurteilungspegels von Kleinluftfahrzeugen Lr_k und des Teilbeurteilungspegels von Grossflugzeugen Lr_g (sog. Superposition). Der Beurteilungspegel Lr_n in der Nacht wird dagegen ausschliesslich durch den Verkehr von Grossflugzeugen bestimmt.

3.1.2. Der Mittelungspegel Leq als akustische Basisgrösse

Als akustische Basisgrösse kommt der Mittelungspegel Leq zur Anwendung. Er berechnet sich wie folgt:

Gleichung 1
$$Leq = L_{AE,tot} + 10 \cdot \lg \left(\frac{1 \text{ s}}{T}\right)$$

Leq: Energieäquivalenter Dauerschallpegel in dB(A).

 $\textit{L}_{\textit{AE,tot}} \; : \quad \text{Gesamtenergiepegel der massgeblichen Fluglärmereignisse in dB(A), bezogen auf die Dauer von 1}$

Sekunde.

T: Bezugsdauer (Mittelungszeit) in Sekunden.

Die Bezugsdauer *T* ist je nach Flugzeugklasse (Grossflugzeuge oder Kleinluftfahrzeuge) und je nach Tageszeit (Tag oder Nacht) verschieden. Je grösser die Bezugsdauer ist, desto grösser ist die Zeitkorrektur und desto kleiner ist somit der Mittelungspegel.

Der Gesamtenergiepegel $L_{AE,tot}$ bildet gemäss Gleichung 1 die Grundgrösse des Mittelungspegels. Er setzt sich aus einer Vielzahl von einzelnen Ereignispegeln L_{AE} zusammen und berechnet sich wie folgt:

Gleichung 2
$$L_{AE,tot} = 10 \cdot \lg \left(\sum_{i=1}^{n} 10^{0.1 \cdot L_{AE,i}} \right)$$

*L*_{AE,i}: Ereignispegel: Pegel der Schallenergie eines einzelnen Fluglärmereignisses, d.h. (logarithmierte) Gesamtintensität eines Geräuschvorgangs, bezogen auf die Dauer von 1 Sekunde.

n : Anzahl der massgeblichen Fluglärmereignisse.

Obige Berechnungsvorschrift lässt sich auch wie folgt schreiben:

Gleichung 3
$$L_{AE,tot} = 10 \cdot \lg \left(\sum_{j=1}^{k} n_{j} \cdot 10^{0.1 \cdot \overline{L}_{AE,j}} \right) \quad wobei: \quad \overline{L}_{AE,j} = 10 \cdot \lg \left(\frac{1}{m_{j}} \sum_{i=1}^{m_{j}} 10^{0.1 \cdot L_{AE,ij}} \right)$$

 $L_{AE,ij}$: Ereignispegel eines einzelnen Fluglärmereignisses des Flugzeugtyps j.

 $\overline{L}_{AE,j}$: Mittlerer Ereignispegel des Flugzeugtyps j.

k : Anzahl Flugzeugtypen.

 m_i : Anzahl Fluglärmereignisse des Flugzeugtyps j zur Berechnung des mittleren Ereignispegels.

n_j: Anzahl der massgeblichen Fluglärmereignisse des Flugzeugtyps j.

Sind die mittleren Ereignispegel und die Anzahl der massgeblichen Flugbewegungen je Flugzeugtyp bekannt, so lässt sich der Mittelungspegel unter Anwendung von Gleichung 1 und Gleichung 3 berechnen. Was dabei bezüglich Flugbewegungen massgeblich ist, kann der LSV resp. den nachfolgenden Kapiteln entnommen werden.

3.1.3. Beurteilungspegel Lr_g für den Lärm des Verkehrs von Grossflugzeugen für den Tag

Der Beurteilungspegel Lr_g für den Lärm des Verkehrs von Grossflugzeugen für den Tag ist der A-bewertete Mittelungspegel Leq_g , der durch den Betrieb von Flugzeugen in der Zeit von 06 bis 22 Uhr im Jahresmittel verursacht wird:

Gleichung 4
$$Lr_q = Leq_q$$

Zur Berechnung von Leq_g werden Gleichung 1 und Gleichung 3 benutzt. Der Gesamtenergiepegel $L_{AE,tot}$ in Gleichung 3 wird anhand der Betriebsdaten und mittels Simulationsrechnungen ermittelt. Die Simulationsrechnungen liefern dabei die mittleren Ereignispegel je Flugzeugtyp und Flugroute (sogenannte *Footprints*, vgl. Kap. 3.2.3). Als massgebliche Fluglärmereignisse n_j werden in Gleichung 3 die Anzahl Flugbewegungen pro Typ, Route und Tag im Jahresmittel eingesetzt. Als Flugbewegung zählt jede Landung und jeder Start. Durchstartmanöver (go around, touch and go) sowie Volten zählen als zwei Flugbewegungen. Es werden nur Flugzeuge mit einem höchstzulässigen Abfluggewicht von mehr als 8'618 kg berücksichtigt. Die Bezugsdauer T beträgt 16 Stunden resp. 57'600 Sekunden.

3.1.4. Beurteilungspegel Lr_k für den Lärm des Verkehrs von Kleinluftfahrzeugen

Der Beurteilungspegel Lr_k für den Lärm des Verkehrs von Kleinluftfahrzeugen ist die Summe des A-bewerteten Mittelungspegels Leq_k und der Pegelkorrektur K:

Gleichung 5
$$Lr_k = Leq_k + K$$

Die Pegelkorrektur K wird anhand der jährlichen Flugbewegungszahl N_k wie folgt berechnet:

Gleichung 6
$$K=0$$
 für $N_k < 15'000$ Bewegungen
$$K = 10 \cdot lg \left(\frac{N_k}{15'000} \right) \qquad \text{für } N_k \ge 15'000 \text{ Bewegungen}$$

Der Mittelungspegel Leq_k wird für die durchschnittliche Zahl der stündlichen Flugbewegungen für einen Tag mit durchschnittlichem Spitzenbetrieb ermittelt. Ein Tag zählt dabei 12 Betriebsstunden. Als Flugbewegung zählt jede Landung und jeder Start. Durchstartmanöver (go around, touch and go) sowie Volten zählen

als zwei Flugbewegungen. Die stündliche Flugbewegungszahl n_k wird gemäss Gleichung 7 wie folgt ermittelt:

- a) Es werden die 6 verkehrsreichsten Monate eines Betriebsjahres bestimmt.
- Während dieser 6 verkehrsreichsten Monate werden, getrennt für alle 7 Wochentage, die durchschnittlichen täglichen Flugbewegungszahlen ermittelt. Die Tagesmittelwerte der beiden verkehrsreichsten Wochentage werden mit N1 und N2 bezeichnet.
- Aus N1 und N2 wird die stündliche Flugbewegungszahl n_k durch Mittelung über 12 Tagesstunden wie folgt berechnet:

Gleichung 7
$$n_k = \frac{N1 + N2}{24}$$

Das Verhältnis der stündlichen Flugbewegungen für einen Tag mit durchschnittlichem Spitzenbetrieb und den Bewegungszahlen pro Stunde im Jahresmittel lässt sich durch den Gewichtsfaktor GF resp. mittels seiner logarithmischen Darstellung K_{GF} wie folgt charakterisieren:

Gleichung 8
$$GF = \frac{n_k \cdot 12 \cdot d}{N_k} = \frac{(N1 + N2) \cdot d}{2 \cdot N_k}$$

Anzahl berücksichtigter Betriebstage (365).

Gleichung 9
$$K_{GF} = 10 \cdot \lg (GF)$$

Unter Anwendung von Gleichung 1 und Gleichung 9 lässt sich der Mittelungspegel der Kleinluftfahrzeuge Leg_k, nach Gleichung 5, welcher sich gemäss LSV auf einen mittleren jährlichen Spitzenbetrieb bezieht, wie folgt berechnen:

Gleichung 10
$$Leq_k = L_{AE,tot} + 10 \cdot lg \left(\frac{1 s}{T}\right) + K_{GF}$$

Der Gesamtenergiepegel $L_{AE,tot}$ wird mittels Gleichung 3 berechnet. Als massgebliche Flugbewegungszahlen n_i werden dort die Anzahl Flugbewegungen pro Typ, Route und Tag im Jahresmittel eingesetzt. Die entsprechenden Angaben werden aus den Betriebsdaten gewonnen. Es werden nur Flugbewegungen von Flugzeugen mit einem höchstzulässigen Abfluggewicht von kleiner gleich 8'618 kg berücksichtigt. Die mittleren Ereignispegel je Flugzeugtyp und Flugroute (Footprints) erhält man aus den Simulationsrechnungen (vgl. Kap. 3.2.3). Mit Hilfe des Korrekturterms K_{GF} wird der Gesamtenergiepegel $L_{AE:tot}$, welcher sich auf die täglichen Flugbewegungen im Jahresmittel bezieht, auf den nach dem Gesetz verlangten durchschnittlichen Spitzenbetrieb hochgerechnet. Als Bezugsdauer T werden 12 Stunden resp. 43'200 Sekunden eingesetzt.

Beurteilungspegel Lr, für den Lärm des Gesamtverkehrs für den Tag 3.1.5.

Der Beurteilungspegel Lr_t wird aus dem Beurteilungspegel für Kleinluftfahrzeuge Lr_k und dem Beurteilungspegel für Grossflugzeuge Lr_q wie folgt berechnet:

Gleichung 11
$$Lr_t = 10 \cdot \lg \left(10^{0.1 \cdot Lr_k} + 10^{0.1 \cdot Lr_g} \right)$$

 Lr_q berechnet sich nach Gleichung 4, Lr_k nach Gleichung 5.

Empa, Abteilung Akustik / Lärmminderung Seite 8 von 24
Auftraggeber: Flughafen Zürich AG Bericht-Nr. 5214.011975

3.1.6. Beurteilungspegel Lr_n für den Lärm des Verkehrs von Grossflugzeugen für die Nachtstunden

Der Beurteilungspegel Lr_n für den Lärm des Verkehrs von Grossflugzeugen für die erste, zweite und letzte Nachtstunde entspricht dem A-bewerteten Mittelungspegel Leq_n , der durch den Betrieb von Flugzeugen in der Zeit von 22 bis 23 Uhr, von 23 bis 05 Uhr und von 05 bis 06 Uhr im Jahresmittel verursacht wird:

Gleichung 12 $Lr_n = Leq_n$

resp.: $Lr_{n1} = Leq_{n1}$

 $Lr_{n2} = Leq_{n2}$

 $Lr_{n3} = Leq_{n3}$

 Lr_{n1} steht für den Beurteilungspegel in der Zeit von 22 bis 23 Uhr, Lr_{n2} für denjenigen in der Zeit von 23 bis 24 Uhr und Lr_{n3} für den Beurteilungspegel in der Zeit von 05 bis 06 Uhr. Zur Berechnung dieser drei Beurteilungspegel werden Gleichung 1 und Gleichung 3 benutzt. Dabei wird der Gesamtenergiepegel $L_{AE,tot}$ von Gleichung 3 anhand der Betriebsdaten und mittels Simulationsrechnungen ermittelt. Die Simulationsrechnungen liefern die mittleren Ereignispegel je Flugzeugtyp und Flugroute (*Footprints*, vgl. Kap. 3.2.3). Als massgebliche Fluglärmereignisse n_j werden in Gleichung 3 die Anzahl Flugbewegungen pro Typ, Route und Nachtperiode im Jahresmittel eingesetzt, wobei die Flüge nach der ersten (22 bis 23 Uhr) und vor der letzten Nachtstunde (05 bis 06 Uhr) zur zweiten Nachtstunde (23 bis 24 Uhr) gezählt werden. Die Bezugsdauer T beträgt für alle drei Zeitabschnitte in der Nacht eine Stunde resp. 3'600 Sekunden.

3.2. Berechnungsverfahren

3.2.1. Verwendetes Verfahren

Für die Basissimulation wird das an der Empa entwickelte Fluglärmsimulationsprogramm FLULA2 verwendet. Das Verfahren wird in der technischen Dokumentation [6] im Detail beschrieben. Für das vorliegende Projekt wird die Version 004 verwendet. Gegenüber der FLULA2 Version 003 mussten im Hinblick auf die Empfehlung von Fluglärmberechnungsverfahren durch das Bundesamt für Umwelt (BAFU) im Sinne von Art. 38 Abs. 2 der LSV geringfügige Anpassungen vorgenommen werden. Diese sind im Detail in einem Bericht beschrieben [4]. Die Analyse der sich daraus ergebenden Auswirkungen auf die Fluglärmberechnung ist in [7] dokumentiert. FLULA2 Version 004 wird explizit vom BAFU als Fluglärmberechnungsprogramm für Kleinluftfahrzeuge und Grossflugzeuge empfohlen [2].

3.2.2. Änderungen in der Fluglärmberechnung gemäss Leitfaden Fluglärm

Aufgrund des seit 2014 gültigen Leitfadens Fluglärm [3] ergeben sich im Vergleich zu den Belastungsjahren bis und mit 2012 [11] methodische Änderungen in der Fluglärmermittlung. Einzelne Änderungen wurden bereits in der Belastungsrechnung der Jahre 2013 [12] und 2014 [16] berücksichtigt und umfassen folgende Punkte:

• Geändertes **Beschleunigungsmodell** für Flugzeuge auf der Startbahn. Dieses bildet nun die Beschleunigung in der Initialphase des Starts auf der Piste resp. das Bremsen auf der Piste als konstant ab. Bis

Empa, Abteilung Akustik / Lärmminderung Seite 9 von 24

Auftraggeber: Flughafen Zürich AG Bericht-Nr. 5214.011975

und mit Berechnung für das Jahr 2012 wurde eine grössere Beschleunigung in der initialen Startphase resp. während des Bremsens modelliert.

- Es wird die Zustimmung der Vollzugsbehörde für die Einteilung einzelner Flugzeugtypen in bestimmte Flugzeugklassen (sog. **Gruppierung**) verlangt. Die Einteilungen der Grossflugzeuge in ihre Klassen gemäss FLULA2-Dokumentation [6] bleibt unverändert, da die Grossflugzeuge der SANC-DB-Datensätze aus den FLULA2-Datensätzen definiert wurden. Die Neueinteilung der Kleinluftfahrzeuge unter Einbezug der in der SANC-DB verfügbaren Flugzeugtypen würde grosse Anpassungen mit entsprechendem Aufwand nach sich ziehen. Wegen der untergeordneten akustischen Bedeutung der Kleinluftfahrzeuge für die Gesamtbelastung wird in Absprache mit dem Bundesamt für Zivilluftfahrt (BAZL) und dem BAFU die Einteilung der Kleinluftfahrzeuge gemäss FLULA2-Dokumentation [6] beibehalten. Somit kann die Belastung durch Kleinluftfahrzeuge analog zu den letzten Jahren durchgeführt werden.
- Alle Helikopter werden gemäss Leitfaden Fluglärm [3] als Kleinluftfahrzeuge gerechnet, auch diejenigen Superpuma (AS332) mit einem maximalen Abfluggewicht von mehr als 8618 kg. Es werden also keine Helikopter mehr als Grossflugzeuge aufgeführt.
- Die **Dokumentation** soll die SANC-DB-Flugzeug-Nr. der Flugzeugemissionen (d.h. Quellendaten) und die benutzten Flugzeugklassen mit Begründung der Klasseneinteilung umfassen. Für Grossflugzeuge und Kleinluftfahrzeuge auf den Landesflughäfen, bei denen die Empa-Richtcharakteristiken und Klasseneinteilungen verwendet werden, muss weder die Flugzeug-Nr. angegeben werden, noch muss eine Begründung für die Klasseneinteilung erfolgen, da die FLULA2-Dokumentation bereits genügt. Des Weiteren muss die Dokumentation einen **digitalen Beschrieb** der in den Karten dargestellten Lärmkonturen bzw. Grenzwertkurven (Esri-Gridfiles ASC und Shapefiles SHP) enthalten. Dieser erfolgt in Textform (.txt).

Weitere im Leitfaden Fluglärm geforderte Anpassungen, namentlich die Verwendung des digitalen Geländemodells **DHM25** und die feinere **Maschengitterweite** von 150 m × 150 m, wurden für die vorliegende Berechnung in Absprache mit dem BAFU und dem BAZL noch nicht umgesetzt. Stattdessen wurde wie bisher als Geländemodell der RIMINI-Datensatz verwendet, und die Maschengitterweite wurde bei 250 m × 250 m belassen.

3.2.3. Einzelflugsimulation

Bis und mit Belastungsjahr 2006 wurde die Fluglärmbelastung des Flughafens Zürich mit der Standardmethode (*Single Flight Simulation*) ermittelt [5]. Bei dieser Methode wird eine zufällige Auswahl von rund 100 Flugbahnen pro Typ und Route für die Fluglärmsimulation getroffen. Seit dem Belastungsjahr 2007 folgt die Berechnung der Fluglärmbelastung der *Full-Size*-Methode (*Full Single Flight Simulation*). Dabei werden alle aus dem Radardatensatz verwertbaren Flugbahnen für die Simulation verwendet (für das Jahr 2015 rund 98%, vgl. Kap. 3.4). Der Einfluss der Simulationsmethode (*Full-Size*-Methode vs. Standardmethode) wurde exemplarisch für das Belastungsjahr 2006 untersucht und dokumentiert [5], [18].

Bei der *Full-Size*-Methode wird jede Flugbahn in FLULA2 einzeln durchgerechnet, indem in den Gitterpunkten des Berechnungsausschnitts der Ereignispegel L_{AE} berechnet wird. Dabei wird für jede der vier gemäss LSV relevanten Verkehrszeiten eine separate Simulation durchgeführt. Die Simulationsergebnisse werden pro Flugzeugtyp und Flugroute energetisch gemittelt und so auf eine Bewegung normiert. Man erhält die sogenannten *Footprints* eines bestimmten Flugzeugtyps auf einer vorgegebenen Flugroute für die ent-

Empa, Abteilung Akustik / Lärmminderung Seite 10 von 24

Auftraggeber: Flughafen Zürich AG Bericht-Nr. 5214.011975

sprechenden Verkehrszeiten (bis zu vier *Footprints* pro Typ und Route). Wie bei der Standardmethode kann auch bei der *Full-Size-*Methode nicht auf die Berechnung der *Footprints* verzichtet werden, da in der Regel nicht von allen Bewegungen Radaraufzeichnungen verfügbar oder auswertbar sind (vgl. [5]).

Bei der Berechnung der *Footprints* wird – im Gegensatz zur Berechnung der Gesamtbelastungen (vgl. Kap. 4.3) – nicht zwischen Grossflugzeugen und Kleinluftfahrzeugen unterschieden. Bei gewissen Flugzeugtypen, für die Flugzeuge mit maximalem Abfluggewicht grösser als auch kleiner als 8'618 kg existieren, werden somit sowohl Bewegungen von Grossflugzeugen als auch von Kleinluftfahrzeugen berücksichtigt. Den *Footprints* der betreffenden Flugzeugtypen liegt folglich ein gewisser Anteil simulierter Bewegungen von Kleinluftfahrzeugen zugrunde. Diese Anteile sind klein für den Tag, sowie erste und zweite Nachtstunde: sie bewegen sich zwischen 0% und 3%. Für die 3. Nachtstunde beträgt der Anteil 13%, entsprechend einer von insgesamt 8 simulierten Bewegungen (vgl. Tabellen 16 bis 23 in Beilage 4).

Die *Footprints* entsprechen dem mittleren Ereignispegel gemäss Gleichung 3. Zur Berechnung der Gesamtbelastung (sogenannte Superposition) für die gemäss LSV relevanten Verkehrszeiten werden die typen-, routen- und verkehrszeit-spezifischen *Footprints* entsprechend dem Verkehrsaufkommen der jeweiligen Verkehrszeit gewichtet. Die Gewichtung wird aus der Bewegungsliste ermittelt [B] und entspricht den massgeblichen Flugbewegungszahlen n_j gemäss Gleichung 3, resp. der Anzahl Bewegungen eines Flugzeugtyps auf einer bestimmten Route pro Tag im Jahresmittel für die betreffende Verkehrszeit.

3.2.4. Quellendaten

Die verwendeten Quellenwerte stammen aus Messungen der Empa am realen Flugverkehr [6]. Es kommt der Quellendatensatz RC2012_01 zur Anwendung (siehe Beilage 5). Im Vergleich zum Datensatz RC2005_1, welcher bis und mit dem Belastungsjahr 2010 verwendet wurde, haben sich für Grossflugzeuge jedoch keine Änderungen ergeben. Die Belastung der Kleinflugzeuge wird anhand der Berechnung aus dem Jahre 2010 [8] hochgerechnet. Letztere Berechnung wurde mit dem Quellendatensatz RC2011_01 durchgeführt.

3.2.5. Leistungssetzung und Leistungsreduktion

Bei der Berechnung der Fluglärmbelastung gelten folgende Grundsätze bezüglich Leistungssetzung und Leistungsreduktion:

- Die in der Simulation verwendeten Start-Richtcharakteristiken sind grundsätzlich für Starts mit "mittlerer" Leistungssetzung ausgelegt.
- Zur Modellierung der Leistungssetzung stehen für gewisse Flugzeugtypen zwei unterschiedliche
 Richtcharakteristiken (RC) zur Verfügung: Eine FT-Richtcharakteristik für hohe Startleistung und eine
 VG-Richtcharakteristik für mittlere Startleistung. Die Einteilung in VG- und FT-Richtcharakteristiken erfolgt aufgrund des Verhältnisses des aktuellen Abfluggewichts (Actual Take Off Weight, ATOW) zum
 maximalen Abfluggewicht (Maximum Take Off Weight, MTOW) gemäss nachfolgender Berechnungsvorschrift (Gleichung 13). Bei Bewegungen ohne Gewichtsangaben werden generell die VG-Richtcharakteristiken verwendet.

Gleichung 13
$$r = \frac{ATOW}{MTOW}$$
 Für: $r \le 0.85$ \rightarrow VG-Richtcharakteristik $r > 0.85$ \rightarrow FT-Richtcharakteristik (sofern existent, sonst VG-Richtcharakteristik)

Empa, Abteilung Akustik / Lärmminderung Seite 11 von 24

Auftraggeber: Flughafen Zürich AG Bericht-Nr. 5214.011975

Bei den Richtcharakteristiken wird eine individuelle Leistungsreduktion nach dem Start (*Cutback*) berücksichtigt. Bei dem in Zürich angewandten Verfahren gemäss Luftfahrthandbuch AIP [1] erfolgt diese Leistungsreduktion in der Regel in ca. 1'500 Fuss über der Piste (entspricht einer Flughöhe von ca. 460 Metern). Sie wird in der Simulation durch eine Reduktion des Schallpegels berücksichtigt, welche je nach Typ zwischen 0 und –7 dB beträgt (vgl. Tabellen 28 und 29 in Beilage 5).

- Bei den Landungen wird eine Leistungsreduktion nach dem Aufsetzen auf der Piste berücksichtigt.
 Dazu wird in der Simulation eine typenspezifische Reduktion des Schallpegels von 0 oder –6 dB vorgenommen (vgl. Tabelle 27 in Beilage 5).
- Die Lande-Richtcharakteristiken gelten streng genommen nur für die letzte Landephase (einige Kilometer vor dem Aufsetzen). Sie entstanden aus Messungen in Gebieten, wo Fahrwerk und Auftriebshilfen grösstenteils ausgefahren und deshalb die aerodynamischen Geräusche entsprechend hoch sind.

Die Quellenwerte und Pegelreduktionen (*Cutback*-Werte) können der technischen Dokumentation von FLULA2 [6] sowie den Tabellen 27 bis 29 der Beilage 5 entnommen werden.

3.2.6. Berechnung der Lärmbelastung durch Kleinluftfahrzeuge

Da einerseits die Ermittlung der Lärmbelastung durch Kleinluftfahrzeuge sehr aufwändig ist und andererseits die Kleinluftfahrzeuge im Vergleich zu den Grossflugzeugen aus akustischer Sicht weniger bedeutend sind, wird nach Absprache mit dem Auftraggeber die für den Betrieb durch Kleinluftfahrzeuge massgebende Lärmbelastung aus einer bestehenden früheren Belastungsrechnung auf das aktuelle Jahr hochgerechnet. Für die Belastungsjahre 2002 bis 2009 bildete die Lärmbelastung durch Kleinluftfahrzeuge im Jahr 2001 die Grundlage für die Hochrechnung. Da sich jedoch der Flottenmix und die Flugrouten mit der Zeit veränderten, wurde die Lärmbelastung durch Kleinflugzeuge für das Jahr 2010 neu ermittelt [8]. Diese Berechnung wird seit der Belastungsrechnung des Jahres 2010 [9] zur Ermittlung der skalierten Belastung durch Kleinluftfahrzeuge verwendet.

Die Skalierung der Belastungsrechnung von Kleinluftfahrzeugen aus dem Jahre 2010 [8] auf die entsprechenden Bewegungszahlen von 2015 erfolgt gemäss Gleichung 14. Für die Skalierung wird der äquivalente Dauerschallpegel von Kleinluftfahrzeugen im Jahresmittel verwendet.

Gleichung 14 $\operatorname{Leq}_{k,2015}^* = \operatorname{Leq}_{k,2010}^* + \Delta L$

 $Leq_{k,2015}^*$: Äquivalenter Dauerschallpegel von Kleinluftfahrzeugen pro Tag im Jahresmittel 2015. $Leq_{k,2010}^*$: Äquivalenter Dauerschallpegel von Kleinluftfahrzeugen pro Tag im Jahresmittel 2010.

 ΔL : Skalierungspegel.

Der Skalierungspegel ΔL berechnet sich gemäss Gleichung 15 aus dem Verhältnis der Flugbewegungszahlen vom aktuellen Betriebsjahr zum Jahr 2010:

Gleichung 15 $\Delta L = 10 \cdot lg \left(\frac{N_{k,2015}}{N_{k,2010}} \right)$

 $N_{k,2015}$: Jährliche Flugbewegungszahl von Kleinluftfahrzeugen für das Betriebsjahr 2015. $N_{k,2010}$: Jährliche Flugbewegungszahl von Kleinluftfahrzeugen für das Betriebsjahr 2010.

Unter Anwendung von Gleichung 10 wird der mittlere jährliche Spitzenbetrieb nach Anhang 5 der LSV über die Pegelkorrektur K_{GF} (Gleichung 9) berücksichtigt.

Empa, Abteilung Akustik / Lärmminderung Seite 12 von 24
Auftraggeber: Flughafen Zürich AG Bericht-Nr. 5214.011975

Gleichung 16
$$Leq_{k,2015} = Leq_{k,2015}^* + K_{GF}$$

Leq_{k,2015}: Äquivalenter Dauerschallpegel des mittleren jährlichen Spitzenbetriebs von Kleinluftfahr-

zeugen für das Betriebsjahr 2015.

 K_{GF} : Pegelkorrektur für Spitzenbetrieb.

Durch Einsetzen des Mittelungspegels $Leq_{k,2014}$ bei Spitzenbetrieb in Gleichung 17 wird der Beurteilungspegel Lr_k für Kleinluftfahrzeuge bestimmt. Die Konstante K entspricht der Bewegungszahlkorrektur nach Gleichung 6.

Gleichung 17
$$Lr_{k,2015} = Leq_{k,2015} + K$$

*Leq*_{k,2015}: Äquivalenter Dauerschallpegel des mittleren jährlichen Spitzenbetriebs von Kleinluftfahr-

zeugen für das Betriebsjahr 2015.

K: Pegelkorrektur nach LSV Anhang 5.

Die zur Berechnung von K, K_{GF} und ΔL notwendigen jährlichen Flugbewegungszahlen N_k von Flugzeugen mit einem maximalen Abfluggewicht von kleiner oder gleich 8'618 kg werden aus den Bewegungslisten der Jahre 2010 und 2015 ermittelt.

3.3. Bewegungszahlen, Pisten- und Routenbelegung

Die Bewegungszahlen werden aus der Bewegungsliste des Flughafens Zürich fürs Jahr 2015 ermittelt [B]. In der Bewegungsliste werden sämtliche Flugereignisse eines Jahres mit Angabe der Start- resp. Landezeit, der Flugroute, des Flugzeugtyps etc. separat aufgeführt. Mit Hilfe der akustischen Referenz-Datenbank der Empa wird jedem einzelnen Flugereignis ein akustischer Referenztyp (RC-Typ) zugeordnet [A]. Die Zuordnungen der einzelnen Flugzeugtypen zu diesen akustischen Referenztypen sind in den Tabellen 27 bis 29 von Beilage 5 dokumentiert.

Mit den Angaben zu den An- und Abflugrouten, den Start- und Landezeiten sowie dem maximalen Abfluggewicht MTOW zur Unterscheidung von Grossflugzeugen und Kleinluftfahrzeugen werden Bewegungsstatistiken für die verschiedenen Verkehrszeiten erstellt. Unter einer Bewegungsstatistik versteht man eine Kreuztabelle, in deren Zeilenköpfen die verwendeten Flugzeugtypen und in deren Spaltenköpfen die Routen stehen. In den Feldern der Bewegungsstatistik stehen die Anzahl Flugbewegungen pro Typ und Route. Die in den Belastungsrechnungen verwendeten Bewegungsstatistiken können in den Tabellen 5 bis 12 der Beilage 2 nachgeschlagen werden.

Mittels des Verhältnisses von aktuellem zu maximalem Abfluggewicht (Gleichung 13) wird die Leistungssetzung beim Start und damit der in der Simulation verwendete Emissionspegel festgelegt. Die Tabellen 24 bis 26 der Beilage 4 zeigen die prozentualen Anteile der mit hoher Startleistung (FT) resp. mit mittlerer Startleistung (VG) berechneten Flugzeugstarts, getrennt für die verschiedenen Startrouten.

Können aufgrund von fehlenden Geometriedaten bestimmte Flugzeugtypen auf einer Route nicht simuliert werden, werden sie nach Möglichkeit durch einen Flugzeugtypen mit ähnlichen akustischen Eigenschaften oder durch einen *Footprint* der fehlenden Typen-Routen-Kombination einer anderen Tageszeit substituiert. Bestehen auch keine Geometriedaten eines akustisch ähnlichen Typs, werden die betreffenden Flüge in der Berechnung nicht berücksichtigt. Nicht identifizierbare Flugzeuge oder Flugzeuge, denen aufgrund fehlen-

Empa, Abteilung Akustik / Lärmminderung Seite 13 von 24
Auftraggeber: Flughafen Zürich AG Bericht-Nr. 5214.011975

der Informationen kein akustischer Referenztyp zugeordnet werden kann, werden ebenfalls nicht berücksichtigt. Eine Übersicht über die substituierten und ausgeschiedenen Flugereignisse findet sich in den Tabellen 13 bis 15 der Beilage 3. Insgesamt wurden bei den Grossflugzeugen 22 Bewegungen substituiert, 0 Bewegungen ausgeschieden und 4 Bewegungen nicht identifiziert (siehe auch Kap. 4.3.1 und 4.3.2). Bei einem Gesamtverkehrsaufkommen von mehr als 265'000 Bewegungen (Beilage 1) ist der Einfluss der substituierten bzw. ausgeschiedenen Flugereignisse somit vernachlässigbar.

3.4. Fluggeometrien

Die An- und Abfluggeometrien werden aus den Radardaten der Flugwegüberwachung ermittelt. Es werden die von der Abteilung Lärmmanagement und Anwohnerschutz der Flughafen Zürich AG in ihrem Fluglärmmonitoringsystem abgelegten Flugbahnen verarbeitet [C].

Für die Ermittlung der Fluggeometrien aus den Radardaten wird das an der Empa entwickelte Radardatenaufbereitungsprogramm SELFA2 verwendet. Das Verfahren beruht auf statistischen Prinzipien, um lückenhafte oder unplausible Flugbahnen sinnvoll zu ergänzen. SELFA2 wurde hinsichtlich der *Full-Size-*Methode
entwickelt, da mit den Selektions- und Aufbereitungsmethoden des früheren Radardatenaufbereitungsprogramms FLBAS1 ein hoher Ausschuss entstand, so dass nur etwa 80 bis 90 Prozent der Fluggeometrien in
den Simulationen verwendet werden konnten. Mit dem neuen Verfahren hingegen können deutlich mehr
Radaraufzeichnungen der Grossflugzeuge für die Simulation verwendet werden (üblicherweise ≥95% [5]).
Im Berichtsjahr 2015 wurden in jeder Verkehrszeit rund 98% der Bewegungen der Grossflugzeuge simuliert
(Beilage 4).

3.5. Quantifizierungen: Flächen der Grenzwertkurven und betroffene Personen

Zur Quantifizierung der Grenzwertüberschreitungen (Flächen und Betroffene Personen) werden der FZAG durch die Empa die Grenzwertkurven in digitaler Form (Shape-Dateien) zur Verfügung gestellt. Die GIS-Fachstelle der FZAG bestimmt daraus die Flächen innerhalb der Grenzwertkurven. Zudem ermittelt sie aus den Grenzwertkurven und den Bevölkerungsdaten die Anzahl Personen über den Belastungsgrenzwerten der LSV [17].

Den Quantifizierungen der Anzahl von Grenzwertüberschreitungen betroffenen Personen liegen die aktuellen Bevölkerungszahlen im Hektarraster sowie die aktuellen Empfindlichkeitsstufen (ES) zugrunde. Stand der Bevölkerungsdaten ist für das Belastungsjahr 2014 die Bevölkerung Ende 2013 und für das Belastungsjahr 2015 die Bevölkerung Ende 2014. Details zur Grundlage der Bevölkerungsdaten können den Berichten der Empa zum Zürcher Fluglärm-Index der Jahre 2013 [13] und 2014 [14] entnommen werden; der FZAG stehen dieselben Daten zur Verfügung

Empa, Abteilung Akustik / Lärmminderung Seite 14 von 24
Auftraggeber: Flughafen Zürich AG Bericht-Nr. 5214.011975

4. Eingabedaten für die Fluglärmberechnungen

4.1. Fluggeometrien

Aus den Radardaten der Flugwegüberwachung werden für jeden Flugzeugtypen auf jeder Route alle im Radardatenaufbereitungsprogramm SELFA2 verwertbaren Flugbahnen simuliert (vgl. Kap. 3.4). Die Tabellen 16 bis 23 der Beilage 4 zeigen die Anzahl der pro Typ, Route und LSV-relevanter Verkehrszeit in der Simulation berücksichtigten Einzelereignisse für Grossflugzeuge. Zu jedem dieser Einzelereignisse existiert eine komplette Flugbahn mit X-, Y- und Z-Koordinaten (X und Y werden in Schweizer Landeskoordinaten angegeben; Z entspricht der Höhe in Metern über der Piste). In den Flugbahnfiles werden zusätzlich die Geschwindigkeitsverläufe gespeichert.

Die in der aktuellen Simulation der Belastung 2015 verwendeten Flugbahnen werden im vorliegenden Bericht nicht dargestellt. Bei Bedarf können sie an der Empa eingesehen werden.

4.2. Akustische Quellendaten und Leistungssetzung

In Beilage 5 sind die akustischen Kenngrössen $L_{A,max}$ und L_{AE} für einen geradlinigen Überflug in einer Referenzdistanz von 1'000 ft (304.8 m) und einer Geschwindigkeit von 160 kt (82.3 m/s) getrennt für Starts mit mittlerer und hoher Startleistung sowie für die Landekonfiguration zusammengestellt. Die prozentualen Anteile der FT-Starts (hohe Startleistung) und VG-Starts (mittlere Startleistung) können den Tabellen 24 bis 26 der Beilage 4 entnommen werden. Aufgrund fehlender Gewichtsangaben (ATOW) werden manche Flugzeugtypen, wie beispielsweise die B7473 oder die B7772, ausschliesslich mit VG simuliert.

4.3. Flugbewegungszahlen

4.3.1. Nicht identifizierbare Flugzeuge

Eine Zusammenstellung der in die Berechnung eingehenden Bewegungszahlen findet sich in Beilage 1 resp. in Tabelle 4-1 und Tabelle 4-2. Von den gesamthaft 265'104 Bewegungen, welche in der vom Flughafen Zürich gelieferten Bewegungsliste aufgeführt werden [B], können 265'100 Bewegungen berücksichtigt werden (Beilage 1). 4 Bewegungen können nicht identifiziert werden, d.h. es können keine Flugzeugtypen (TYP10 der Empa) zugeordnet werden (Tabelle 15 in Beilage 3) und fehlen somit in der Gesamtbewegungszahl. Die Anzahl dieser Bewegungen ist jedoch vernachlässigbar und hat keinen Einfluss auf die Gesamtbelastung.

4.3.2. Flugbewegungszahlen der Grossflugzeuge

Tabelle 4-1 zeigt die jährlichen Flugbewegungszahlen N_g von Grossflugzeugen im Jahre 2015, getrennt nach Starts und Landungen.

Empa, Abteilung Akustik / Lärmminderung Seite 15 von 24

Auftraggeber: Flughafen Zürich AG Bericht-Nr. 5214.011975

Tabelle 4-1: Jährliche Flugbewegungszahlen N_g von Grossflugzeugen im Jahr 2015 für die LSV-relevanten Zeiten (vgl. Tabelle 1, Beilage 1).

	Starts	Landungen	Total
Tag (06–22 Uhr)	119′192	116'065	235'257
erste Nachtstunde (22–23 Uhr)	2'489	6′741	9′230
zweite Nachtstunde (23–05 Uhr)	1′759	626	2'385
letzte Nachtstunde (05–06 Uhr)	1	6	7
Total	123'441	123'438	246′879

Die zur Berechnung der Fluglärmbelastung verwendeten Bewegungsstatistiken mit Angaben zur Routenbelegung und zum Flottenmix können den Tabellen 5 bis 12 der Beilage 2 entnommen werden. Die in Tabelle 4-1 aufgeführten Bewegungszahlen sind geringfügig höher als die Gesamtsumme der in den Bewegungsstatistiken von Beilage 2 ausgewiesenen und in der Belastungsrechnung verwendeten Flugbewegungen. Insgesamt können 26 Bewegungen als Folge fehlender oder fehlerhafter Flugbahnen nicht berechnet werden (vgl. Beilage 3). Von diesen lassen sich 22 Bewegungen durch *Footprints* ähnlicher Flugzeugtypen oder Routen resp. *Footprints* desselben Flugzeugtyps aus anderen Tageszeiten substituieren (Beilage 3, substituierte Typen/Footprints). 4 Bewegungen werden dagegen weggelassen. Die Anzahl der vernachlässigten Bewegungen ist jedoch gering, verglichen mit der Gesamtbewegungszahl der betreffenden Verkehrszeiten (vgl. Beilagen 1 und 3), und hat keinen Einfluss auf die Gesamtbelastung.

4.3.3. Flugbewegungszahlen der Kleinluftfahrzeuge

Tabelle 4-2 zeigt die jährliche Flugbewegungszahl N_k für Kleinluftfahrzeuge im Jahre 2015, getrennt nach Starts und Landungen.

Tabelle 4-2: Jährliche Flugbewegungszahl N_k von Kleinluftfahrzeugen im Jahr 2015 (vgl. Tabelle 1, Beilage 1).

	Starts	Landungen	Total
ganzer Tag (24 h)	9'108	9'113	18'221

Die Belastung durch Kleinluftfahrzeuge wird über eine Hochrechnung der Belastung für das Jahr 2010 auf das Jahr 2015 ermittelt (vgl. Kap. 3.1.4 und 3.2.6). Dazu werden die Kennzahlen des Flugbetriebs der Kleinluftfahrzeuge im Jahre 2015 verwendet (Beilage 1). Der Skalierungspegel ΔL zur Umrechnung der Belastung 2010 auf die Belastung 2015 beträgt -1.097 dB. Er berechnet sich nach Gleichung 15 mit $N_{k,2010}$ gleich 23'458 [9] und $N_{k,2015}$ gleich 18'221 Bewegungen. Die Pegelkorrektur K berechnet sich nach Gleichung 6 und beträgt 0.845 dB. Unter Anwendung von Gleichung 9 ergibt sich zur Berücksichtigung des mittleren Spitzenbetriebs ein K_{GF} von 1.003 dB. Die Gesamtkorrektur ($\Delta L + K_{GF} + K$) beträgt somit 0.751 dB.

Empa, Abteilung Akustik / Lärmminderung Seite 16 von 24

Auftraggeber: Flughafen Zürich AG Bericht-Nr. 5214.011975

5. Berechnungsergebnisse

5.1. Fluglärmkarten

Die Resultate der Berechnungen sind auf 12 Karten dargestellt (Tabelle 5-1). Die Karten befinden sich am Schluss des vorliegenden Berichts.

Tabelle 5-1: Übersicht der erstellten Karten.

Karte 1	Gesamtverkehr, Tag (06 bis 22 Uhr), Beurteilungspegel Lr_t	LRTZRH15.shp
Karte 2	Grossflugzeuge, Tag (06 bis 22 Uhr), Beurteilungspegel Lr_g	SL16ZRH15_G8T_06-22.shp
Karte 3	Grossflugzeuge, 1. Nachtstunde (22 bis 23 Uhr), Beurteilungspegel Lr_n	SL01ZRH15_G8T_22-23.shp
Karte 4	Grossflugzeuge, 2. Nachtstunde (23 bis 24 Uhr), Beurteilungspegel Lr_n	SL01ZRH15_G8T_23-05.shp
Karte 5	Grossflugzeuge, Letzte Nachtstunde (05 bis 06 Uhr), Beurteilungspegel Lr_n	SL01ZRH15_G8T_05-06.shp
Karte 6	Kleinluftfahrzeuge, Beurteilungspegel <i>Lr</i> _k	LRKZRH15_K8T_HR.shp
Karte 7	Gebiete der ES II über den Belastungsgrenzwerten der LSV	GWK_ZRH15.shp LRTZRH15.shp
Karte 8	Gebiete der ES III über den Belastungsgrenzwerten der LSV	Bauzonen 2010 geostat_2008.shp d_gemeinde_d_sdlgbt
Karte 9	Gebiete der ES IV über den Belastungsgrenzwerten der LSV	- u_gemeinue_u_suigbt
Karte 10	Vergleich der Grenzwertkurven der ES II zwischen 2014 und 2015	GWK_ZRH15.shp ESII_ZRH14_ZRH15.shp
Karte 11	Vergleich der Grenzwertkurven der ES III zwischen 2014 und 2015	GWK_ZRH15.shp ESIII_ZRH14_ZRH15.shp
Karte 12	Vergleich der Grenzwertkurven der ES IV zwi- schen 2014 und 2015	GWK_ZRH15.shp ESIV_ZRH14_ZRH15.shp

Empa, Abteilung Akustik / Lärmminderung Seite 17 von 24

Auftraggeber: Flughafen Zürich AG Bericht-Nr. 5214.011975

Die Karten 1 bis 6 zeigen die Resultate der Berechnungen als Niveaulinien gleicher Belastung. Die Abstände zwischen den Kurven (Äquidistanzen) betragen 1 dB. Es wird jeweils das nach dem Gesetz tiefste relevante Belastungsniveau gezeigt (Planungswert der Empfindlichkeitsstufe I am Tag von 53 dB resp. 50 dB (Kleinluftfahrzeuge) und in der Nacht von 43 dB).

Karten 7 bis 9 zeigen die raumplanerischen Konsequenzen der Belastungsrechnungen. Dabei wird nach Empfindlichkeitsstufen (ES) unterschieden. ES I wird nicht dargestellt da es keine Betroffenen gibt. Für die restlichen drei in der LSV definierten Empfindlichkeitsstufen II bis IV wird je eine Karte erstellt, auf welcher die Gebiete der entsprechenden Empfindlichkeitsstufe sowie die zugehörigen Grenzbelastungskurven dargestellt sind. Bei letzteren wird in Planungswert (PW), Immissionsgrenzwert (IGW) und Alarmwert (AW) unterschieden.

Auf Karten 10 bis 12 werden die Gebiete mit Grenzwertüberschreitungen des Jahres 2015 gemäss Karten 7 bis 9 mit denjenigen des vorangegangenen Jahres 2014 verglichen, indem die Differenzen der ES II, III und IV gebildet werden. Zusätzliche Gebiete der Grenzwertkurven im Jahr 2015 im Vergleich zum Jahr 2014 sind rot eingefärbt, und wegfallende Gebiete im Jahr 2015 im Vergleich zum Jahr 2014 sind blau eingefärbt.

5.2. Differenzen in den Grenzwertkurven bezüglich Vorjahr

Die auf den Karten 10 bis 12 zu beobachtenden Differenzen in den Grenzwertkurven sind hauptsächlich auf Unterschiede in der Flugroutenbelegung der Nacht (Starts nach Norden; Landungen von Osten und Süden) sowie am Tag (Starts nach Westen) zurückzuführen. Zwischen den Jahren 2014 und 2015 ergaben sich zum Teil deutliche Differenzen in der Flugroutenbelegung. Die Belastung durch nächtliche Starts nach Nordosten (Routen O32 und O34) nahm wegen abnehmender Bewegungszahlen stark ab. Die Belastung durch nächtliche Starts nach Nordwesten (Routen N32 und N34) mit anschliessender Linkskurve nach Süden nahm hingegen zu, wobei die Linkskurve der Nordweststarts etwas nach Norden verschoben wurde. Die Belastung durch die aus der Flight Level 80 (FL80) resultierenden Westschleife südlich vom Flughafen in Richtung Osten (vgl. Diskussion in [15]) nahm deutlich ab. Insgesamt starteten im Jahr 2015 weniger Flugzeuge auf den Nordwestrouten als im Jahr 2014. Die nächtlichen Landungen von Osten (P28) und von Süden (Q34) nahmen hingegen zu. Am Tag nahmen die Starts nach Westen (Routen I28 und K28) ab. Die Anzahl Starts nach Süden (Routen E16 und F16) änderte sich zwischen den Jahren 2014 und 2015 nur wenig, jedoch wurde die Linkskurve wegen der neuen Anforderung an die Mindesthöhe vor dem Abdrehen im Jahr 2015 etwas weniger eng geflogen als im Jahr 2014.

5.3. Flächenausdehnung und Anzahl Betroffene über den Grenzwerten

Beilage 6 (Tabelle 30) enthält die Anzahl Betroffener sowie die Grenzwertflächen für die Jahre 2014 und 2015 [D]. Entsprechend der in Abschnitt 5.2 beobachteten Differenzen im Flugregime nehmen die Flächen der Grenzwertkurven grösstenteils ab (Ausnahme: ES IV). Vor allem in der ersten und zweiten Nachtstunde sind die Flächen reduziert (über alle Grenzwerte). Für den Tag sind die Unterschiede geringer.

Bei den betroffenen Personen ergibt sich über ES II ein gemischtes Bild: während für PW die Anzahl Betroffener am Tag zunimmt, ergibt sich in den Nachtstunden sowie für die Umhüllende eine Reduktion. Bei dem IGW zeigt sich eine Zunahme in den Nachtstunden und eine Abnahme für den Tag und die Umhüllende. Für den AW sind weniger Personen am Tag und in der zweiten Nachtstunde betroffen, jedoch ergibt sich eine Zunahme in der ersten Nachtstunde sowie für die Umhüllende. Die Anzahl betroffener Personen

Empa, Abteilung Akustik / Lärmminderung Seite 18 von 24
Auftraggeber: Flughafen Zürich AG Bericht-Nr. 5214.011975

in der ES III nimmt generell zu (Ausnahme IGW am Tag), während in der ES IV in beiden Jahren nur wenige Personen betroffen sind.

5.4. Genauigkeit der Berechnungen

5.4.1. Allgemeine Hinweise zur Genauigkeit von Fluglärmberechnungen

Die Genauigkeit von Fluglärmberechnungen wurde detailliert in einer an der Empa, Abteilung Akustik / Lärmminderung, abgeschlossenen Dissertation untersucht [19]. Die Unsicherheit der Fluglärmberechnungen wird durch verschiedene Faktoren beeinflusst. In der vorliegenden Berechnung liegen die Unsicherheiten vor allem im akustischen Modell (Richtcharakteristik, Schallausbreitung) sowie in den Variationen in den Leistungssetzungen der Flugzeuge je nach Gewicht und Flugsegment (derated take-off, climb power).

Da die Quellendaten hinreichend auf den lokalen Flottenmix abgestimmt sind, kann die Unsicherheit der berechneten Jahresbelastungen (im Sinne einer Standardunsicherheit) am Tag mit rund 0.5 dB und in der

berechneten Jahresbelastungen (im Sinne einer Standardunsicherheit) am Tag mit rund 0.5 dB und in der Nacht mit rund 1.0 dB abgeschätzt werden. Dabei sind Abweichungen eingeschlossen, die auf meteorologische Einflüsse zurückzuführen sind und die von Variationen in der Leistungssetzung herrühren. Die Unsicherheitsangaben gelten jedoch nur für die in den Karten 1 bis 12 dargestellten Belastungsbereiche.

5.4.2. Nicht berücksichtigte Flugbewegungen

Aufgrund unvollständiger Inputdaten können nicht alle in der Bewegungsliste enthaltenen Flugbewegungen in der Berechnung verwendet werden. Der Anteil der nicht-identifizierbaren Flugbewegungen ist vernachlässigbar klein (0.02‰, 4 von total 265′104 Bewegungen, vgl. Beilage 3). Auch der Anteil der substituierten oder nicht berücksichtigten Bewegungen der Grossflugzeuge an der Gesamtbewegungszahl ist zu jeder Verkehrszeit klein (zwischen 0 und 0.13‰, vgl. Beilage 3) und hat damit keinen Einfluss auf die Genauigkeit der ausgewiesenen Lärmbelastung.

Empa, Abteilung Akustik / Lärmminderung Seite 19 von 24

Auftraggeber: Flughafen Zürich AG Bericht-Nr. 5214.011975

6. Datengrundlagen, Literatur, Begriffe und Abkürzungen

6.1. Datengrundlagen

- [A] Empa, 2016. Bewegungsdaten Zürich 2015 (aufbereitete Bewegungsliste, ZRH15_Bewstat_DB02_V2.mdb).
- [B] FZAG, 2016. *Bewegungsdaten 2015* (ZRH15_FZAG_V1.mdb, Datenlieferung per FTP am 02.03.2016 von Edith Hug).
- [C] FZAG, 2016. *Radardaten 2015* (Monatsdateien (2015MM.txt), Datenlieferung per FTP am 01.02.2016 von Edith Hug).
- [D] FZAG, 2016. *Personen und Flächen der Grenzwertkurven* (M2015_BevölkerungUndFlaechen.xlsx, Datenlieferung per E-Mail am 02.06.2016 von M. Bissegger).

6.2. Literatur

- [1] AIP. Aeronautical Information Publication (AIP) Switzerland. Skyguide, Zürich.
- [2] BAFU, 2014. Empfohlene Lärmberechnungsprogramme für die Fluglärmberechnung in der Schweiz. Referenz/Aktenzeichen: NO63-1935. http://www.bafu.admin.ch/laerm/10312/10313/11320/index.html?lang=de.
- [3] BAFU, 2014. *Leitfaden Fluglärm. Vorgaben für die Lärmermittlung. Fassung für die Vernehmlassung bis September 2014.* Bundesamt für Umwelt, Bern. http://www.bafu.admin.ch/laerm/10312/10313/11320/index.html?lang=de.
- [4] Empa, 2009. Anpassungen in FLULA2 im Zusammenhang mit den Empfehlungen des BAFU für Fluglärmberechnungsverfahren. Bericht 2: Technische Umsetzung. Bericht Nr. 841'384 - 2. Eidgenössische Materialprüfungs- und Forschungsanstalt (Empa), Abteilung Akustik / Lärmminderung, Dübendorf.
- [5] Empa, 2009. Flughafen Zürich, Fluglärmbelastung im Jahre 2006, Vergleich der Full-Size-Methode (Full Single Flight Simulation, SELFA2) mit der Standardmethode der Empa (Single Flight Simulation, SELFA2). Bericht Nr. 445'518 3. Eidgenössische Materialprüfungs- und Forschungsanstalt (Empa), Abteilung Akustik / Lärmminderung, Dübendorf.
- [6] Empa, 2010. FLULA2, Ein Verfahren zur Berechnung und Darstellung der Fluglärmbelastung. Technische Programm-Dokumentation. Version 4. Eidgenössische Materialprüfungs- und Forschungsanstalt (Empa), Abteilung Akustik / Lärmminderung, Dübendorf. http://www.empa.ch/web/s509/flula2
- [7] Empa, 2010. Anpassungen in FLULA2 im Zusammenhang mit den Empfehlungen des BAFU für Fluglärmberechnungsverfahren. Bericht 3: Auswirkungen auf die Fluglärmberechnung. Bericht Nr. 841'384 3. Eidgenössische Materialprüfungs- und Forschungsanstalt (Empa), Abteilung Akustik / Lärmminderung, Dübendorf.
- [8] Empa, 2011. Flughafen Zürich, Aktualisierung der Berechnungsgrundlagen zur Ermittlung des Beurteilungspegels Lrk für Kleinluftfahrzeuge. Bericht Nr. 455'280. Eidgenössische Materialprüfungs- und Forschungsanstalt (Empa), Abteilung Akustik / Lärmminderung, Dübendorf.
- [9] Empa, 2011. Flughafen Zürich, Fluglärmbelastung im Jahre 2010. Bericht Nr. 457'090. Eidgenössische Materialprüfungs- und Forschungsanstalt (Empa), Abteilung Akustik / Lärmminderung, Dübendorf.

Empa, Abteilung Akustik / Lärmminderung Seite 20 von 24

Auftraggeber: Flughafen Zürich AG Bericht-Nr. 5214.011975

[10] Empa, 2012. Flughafen Zürich, Fluglärmbelastung im Jahre 2011. Bericht Nr. 459'899. Eidgenössische Materialprüfungs- und Forschungsanstalt (Empa), Abteilung Akustik / Lärmminderung, Dübendorf.

- [11] Empa, 2013. *Flughafen Zürich, Fluglärmbelastung im Jahre 2012*. Bericht Nr. 5214.000982. Eidgenössische Materialprüfungs- und Forschungsanstalt (Empa), Abteilung Akustik / Lärmminderung, Dübendorf.
- [12] Empa, 2014. *Flughafen Zürich, Fluglärmbelastung im Jahre 2013*. Bericht Nr. 5214.004983. Eidgenössische Materialprüfungs- und Forschungsanstalt (Empa), Abteilung Akustik / Lärmminderung, Dübendorf.
- [13] Empa, 2014. *Flughafen Zürich, Zürcher Fluglärm-Index ZFI im Jahre 2013*. Bericht Nr. 5214.005883 1. Eidgenössische Materialprüfungs- und Forschungsanstalt (Empa), Abteilung Akustik / Lärmminderung, Dübendorf, http://www.afv.zh.ch/zfi.
- [14] Empa, 2015. Flughafen Zürich, Zürcher Fluglärm-Index ZFI im Jahre 2014. Bericht Nr. 5214.008333 1. Eidgenössische Materialprüfungs- und Forschungsanstalt (Empa), Abteilung Akustik / Lärmminderung, Dübendorf, http://www.vd.zh.ch/flughafenbericht.
- [15] Empa, 2015. Flughafen Zürich, Zürcher Fluglärm-Index ZFI im Jahre 2014, Sensitivitätsbetrachtungen.

 Bericht Nr. 5214.008333 2. Eidgenössische Materialprüfungs- und Forschungsanstalt (Empa), Abteilung Akustik / Lärmminderung, Dübendorf, http://www.vd.zh.ch/flughafenbericht.
- [16] Empa, 2015. Flughafen Zürich, Fluglärmbelastung im Jahre 2014. Bericht Nr. 5214.008708. Eidgenössische Materialprüfungs- und Forschungsanstalt (Empa), Abteilung Akustik / Lärmminderung, Dübendorf.
- [17] LSV, 1986. Lärmschutz-Verordnung (LSV) vom 15. Dezember 1986 (Stand am 1. Januar 2016). SR 814.41. https://www.admin.ch/opc/de/classified-compilation/19860372/index.html.
- [18] Schäffer, B., Bütikofer, R., Plüss, S., Thomann, G., 2011. *Aircraft noise: accounting for changes in air traffic with time of day.* Journal of the Acoustical Society of America, Vol. 129 (1), S. 185-199.
- [19] Thomann, G., 2007. *Mess- und Berechnungsunsicherheit von Fluglärmbelastungen und ihre Konse-quenzen*. Dissertation, Diss. ETH Nr. 17433. ETH Zürich, Zürich. http://dx.doi.org/10.3929/ethz-a-005484556.

6.3. Verwendete Begriffe und Abkürzungen

AIP Luftfahrthandbuch (Aeronautical Information Publication)

ATOW Aktuelles Abfluggewicht (Actual Take Off Weight)

AW Alarmwert

BAFU Bundesamt für Umwelt

d Anzahl berücksichtigter Betriebstage

dB Dezibel

Empa Eidgenössische Materialprüfungs- und Forschungsanstalt

ES Empfindlichkeitsstufe

FLBAS1 Früheres Radardatenaufbereitungsprogramm der Empa, im Einsatz von 1997 bis 2007

Empa, AbteilungAkustik / LärmminderungSeite 21 von 24Auftraggeber:Flughafen Zürich AGBericht-Nr. 5214.011975

FLULA2	Fluglärmberechnungsprogramm der Empa
FT	Code für Richtcharakteristik für hohe Startleistung
GF	Gewichtsfaktor zur Umrechnung der Bewegungszahlen im Jahresmittel auf die Bewegungszahlen eines Tages mit durchschnittlichem Spitzenbetrieb
IGW	Immissionsgrenzwert
K	Pegelkorrektur nach LSV, Anhang 5
K_{GF}	Logarithmische Darstellung des Gewichtsfaktors <i>GF</i> , ausgedrückt in dB, zur Umrechnung der Bewegungszahlen im Jahresmittel auf die Bewegungszahlen eines Tages mit durchschnittlichem Spitzenbetrieb
$L_{A,max}$	Aus dem Quellenmodell von FLULA2 resultierender, A-bewerteter Maximalpegel
L_{AE}	A-bewerteter Ereignispegel
$L_{AE,tot}$	Gesamtenergiepegel
Leq	Mittelungspegel (energieäquivalenter Dauerschallpegel)
Leq_g	Mittelungspegel für den Lärm des Verkehrs von Grossflugzeugen am Tag (06 bis 22 Uhr)
Leq^*_k	Äquivalenter Dauerschallpegel von Kleinluftfahrzeugen pro Tag im Jahresmittel
Leq _k	Äquivalenter Dauerschallpegel von Kleinluftfahrzeugen pro Tag mit durchschnittlichem Spitzenbetrieb
Leq _n	Mittelungspegel für den Lärm des Verkehrs von Grossflugzeugen in der Nacht (Leq_{n1} : 22 bis 23 Uhr, Leq_{n2} : 23 bis 24 Uhr, Leq_{n3} : 05 bis 06 Uhr)
Lr	Beurteilungspegel
Lr_g	Beurteilungspegel für den Lärm des Verkehrs von Grossflugzeugen am Tag (06 bis 22 Uhr)
Lr_k	Beurteilungspegel für den Lärm des Verkehrs von Kleinluftfahrzeugen
Lr _n	Beurteilungspegel für den Lärm des Verkehrs von Grossflugzeugen in den Nachtstunden (Lr_{n1} : 22 bis 23 Uhr, Lr_{n2} : 23 bis 24 Uhr, Lr_{n3} : 05 bis 06 Uhr)
Lr _t	Beurteilungspegel für den Lärm des Gesamtverkehrs am Tag
LSV	Lärmschutzverordnung
MTOW	Maximales Abfluggewicht (Maximum Take Off Weight)
Ν	Jährliche Flugbewegungszahl
n	Stündliche Flugbewegungszahl (Anzahl Flugbewegungen pro Stunde im Jahresmittel)
n*	Tägliche Flugbewegungszahl (Anzahl Flugbewegungen pro Tag im Jahresmittel)
n^*_g	Tägliche Flugbewegungszahl von Grossflugzeugen im Jahresmittel
n^*_k	Tägliche Flugbewegungszahl von Kleinluftfahrzeugen im Jahresmittel
N1	Durchschnittliche tägliche Flugbewegungszahl von Kleinluftfahrzeugen für einen Tag mit durchschnittlichem Spitzenbetrieb: verkehrsreichster Wochentag
N2	Durchschnittliche tägliche Flugbewegungszahl von Kleinluftfahrzeugen für einen Tag mit durchschnittlichem Spitzenbetrieb: zweit-verkehrsreichster Wochentag

Empa, AbteilungAkustik / LärmminderungSeite 22 von 24Auftraggeber:Flughafen Zürich AGBericht-Nr. 5214.011975

N_g	Jährliche Flugbewegungszahl von Grossflugzeugen
n_g	Stündliche Flugbewegungszahl von Grossflugzeugen im Jahresmittel
N_k	Jährliche Flugbewegungszahl von Kleinluftfahrzeugen
n_k	Stündliche Flugbewegungszahl von Kleinluftfahrzeugen für einen Tag mit durchschnittlichem Spitzenbetrieb
PW	Planungswert
RC	Richtcharakteristik: richtungsabhängige Schallabstrahlung einer Schallquelle, mittels eines mathematischen Modells beschrieben
SELFA2	Neues Radardatenaufbereitungsprogramm der Empa, im Einsatz seit 2008
Τ	Bezugsdauer: massgebliche Mittelungszeit zur Ermittlung des Leq (16 Stunden resp. 57'600 Sekunden, 12 Stunden resp. 43'200 Sekunden oder 1 Stunde resp. 3'600 Sekunden)
TYP10	Referenztyp für eine Gruppe von Flugzeugen mit ähnlichen akustischen Eigenschaften
VG	Code für Richtcharakteristik für mittlere Startleistung
ΔL	Skalierungspegel (Pegelkorrektur zur Umrechnung einer gegebenen Belastung auf aktuelle Bewegungszahlen)

Empa, AbteilungAkustik / LärmminderungSeite 23 von 24Auftraggeber:Flughafen Zürich AGBericht-Nr. 5214.011975

7. Verzeichnis der Beilagen

Tabelle 1:	Bewegungszahlen 2015 (inkl. substituierte und in der Berechnung nicht berücksichtigte Flüge, ohne nicht iden- tifizierbare Flüge)	Beilage 1 ZRH15_5214011975_BEWZAHL.xlsx
Tabelle 2:	Wochentagsverteilung der Bewegungen der Kleinluftfahrzeuge der sechs verkehrsreichsten Monate	
Tabelle 3:	Monatsverteilung der Bewegungen der Kleinluftfahrzeuge	
Tabelle 4:	Kennzahlen der Kleinluftfahrzeuge	
Tabelle 5:	Jährliche Starts 2015, Grossflugzeuge, 06-22 Uhr	Beilage 2
Tabelle 6:	Jährliche Landungen 2015, Grossflugzeuge, 06-22 Uhr	ZRH15_5214011975_BEWSTAT.xls
Tabelle 7:	Jährliche Starts 2015, Grossflugzeuge, 22-23 Uhr	
Tabelle 8:	Jährliche Landungen 2015, Grossflugzeuge, 22-23 Uhr	
Tabelle 9:	Jährliche Starts 2015, Grossflugzeuge, 23-05 Uhr	
Tabelle 10:	Jährliche Landungen 2015, Grossflugzeuge, 23-05 Uhr	
Tabelle 11:	Jährliche Starts 2015, Grossflugzeuge, 05-06 Uhr	
Tabelle 12:	Jährliche Landungen 2015, Grossflugzeuge, 05-06 Uhr	
Tabelle 13:	Substituierte und nicht berücksichtigte Flüge, Grossflugzeuge, Starts	Beilage 3 ZRH15_5214011975_SUBST.xls
Tabelle 14:	Substituierte und nicht berücksichtigte Flüge, Grossflugzeuge, Landungen	
Tabelle 15:	Nicht identifizierbare / berücksichtigte Flugzeuge	
Tabelle 16:	Anzahl simulierte Flüge pro Typ und Route, Grossflugzeuge, Starts, 06-22 Uhr	Beilage 4 ZRH15_5214011975_SIMULATION.xlsx
Tabelle 17:	Anzahl simulierte Flüge pro Typ und Route, Grossflugzeuge, Landungen, 06-22 Uhr	
Tabelle 18:	Anzahl simulierte Flüge pro Typ und Route, Grossflugzeuge, Starts, 22-23 Uhr	
Tabelle 19:	Anzahl simulierte Flüge pro Typ und Route, Grossflugzeuge, Landungen, 22-23 Uhr	

Empa, AbteilungAkustik / LärmminderungSeite 24 von 24Auftraggeber:Flughafen Zürich AGBericht-Nr. 5214.011975

Tabelle 20:	Anzahl simulierte Flüge pro Typ und Route, Grossflugzeuge, Starts, 23-05 Uhr	
Tabelle 21:	Anzahl simulierte Flüge pro Typ und Route, Grossflugzeuge, Landungen, 23-05 Uhr	
Tabelle 22:	Anzahl simulierte Flüge pro Typ und Route, Grossflugzeuge, Starts, 05-06 Uhr	
Tabelle 23:	Anzahl simulierte Flüge pro Typ und Route, Grossflugzeuge, Landungen, 05-06 Uhr	
Tabelle 24:	Prozentualer Anteil FT- und VG-Starts pro Typ und Route in der Simulation, 06-22 Uhr	
Tabelle 25:	Prozentualer Anteil FT- und VG-Starts pro Typ und Route in der Simulation, 22-23 Uhr	
Tabelle 26:	Prozentualer Anteil FT- und VG-Starts pro Typ und Route in der Simulation, 23-05 Uhr	
Tabelle 27:	Akustische Kenndaten, Typenzuordnung, Landung (AP)	Beilage 5
Tabelle 28:	Akustische Kenndaten, Typenzuordnung, Start (VG)	ZRH15_5214011975_TYPENZUO.xlsx/doc
Tabelle 29:	Akustische Kenndaten, Typenzuordnung, Start (FT)	
Tabelle 30:	Flächen und Anzahl Personen in den GWK (2015 und	Beilage 6
	2014) [Auswertungen Flughafen Zürich AG]	ZRH15_5214011975_BevölkerungUndFla echen.xlsx

Bericht-Nr. 5214.011975

Tabelle 1: Bewegungszahlen 2015 (inkl. substituierte und in der Berechnung nicht berücksichtigte Flüge, ohne nicht identifizierbare Flüge)

Verkehrs-	Grossflugzeuge		Kleinluftfahrzeuge		Total				
zeiten	Start	Landung	Total	Start	Landung	Total	Start	Landung	Total
Tag	119'192	116'065	235'257	9'061	9'053	18'114	128'253	125'118	253'371
1. Nachtstunde	2'489	6'741	9'230	22	33	55	2'511	6'774	9'285
2. Nachtstunde	1'759	626	2'385	21	26	47	1'780	652	2'432
Letzte Nachtstunde	1	6	7	4	1	5	5	7	12
Total	123'441	123'438	246'879	9'108	9'113	18'221	132'549	132'551	265'100

qry92k_Bewegungszahlen LSV Export

Tabelle 2: Wochentagsverteilung der Bewegungen der Kleinluftfahrzeuge der sechs verkehrsreichsten Monate

Wochentag	Bewegungen	Bewegungen in den	Anzahl
_	Tagesmittelwert	6 verkehrsreichsten	Tage
		Monaten	_
Mittwoch	63.6	1'718	27
Freitag	62.2	1'616	26
Donnerstag	61.1	1'588	26
Dienstag	59.8	1'555	26
Montag	57.8	1'504	26
Sonntag	51.7	1'343	26
Samstag	46.8	1'217	26

qry96h_Wochentagsverteilung KLFZ 6VRMT Export

Tabelle 4: Kennzahlen der Kleinluftfahrzeuge

14.5		
jährliche Flugbewegungszahl 2010	N _{k,2010} :	23'458 [-]
jährliche Flugbewegungszahl 2015	N _{k,2015} :	18'221 [-]
Tagesmittelwert des verkehrsreichsten Wochentags	N1:	63.6 [/Tg]
Tagesmittelwert des zweit-verkehrsreichsten Wochentags	N2:	62.2 [/Tg]
stündliche Flugbewegungszahl von Kleinluftfahrzeugen	n _k :	5.2 [/Std]
Gewichtsfaktor	GF:	1.260 [-]
additiver Term Gewichtsfaktor	K _{GF} :	1.003 [dB]
Pegelkorrektur	K:	0.845 [dB]
Skalierungspegel	ΔL:	-1.097 [dB]

Tabelle 3: Monatsverteilung der Bewegungen der Kleinluftfahrzeuge

Rang	Monat	Bewegungen
1	Juli	1'898
2	Juni	1'889
3	August	1'798
4	Mai	1'738
5	September	1'722
6	April	1'496
7	März	1'493
8	Oktober	1'437
9	November	1'313
10	Januar	1'191
11	Dezember	1'191
12	Februar	1'055
	Total	18'221

gry96a_Monatsverteilung KLFZ Export

Tabelle 5: Jährliche Starts 2015, Grossflugzeuge, 06-22 Uhr

RWY10 RWY16 RWY28 RWY32 RWY34 RC-Tvp A10 C10 E16 F16 G16 K28 N32 O32 N34 O34 Total Anteil: 74 0% 15'274 13% A319 5'765 2'341 5'354 A320 11'104 10'640 5'239 1'901 32'056 27% A321 1'116 2'435 2'341 1'514 8'859 5'747 5% A3302 2'755 1'834 A3403 2'188 3'039 3% A3406 0% AN12 0% AT42 0% Ω Ω B7272 B73F 1'520 2'598 B73S 1'058 2'528 2% Ω B73V 1'007 1% B7473 0% B7474 0% B74SP 0% B7572 0% B7672 B7673 1'163 1'588 1% B7772 1'322 1% C130 Ω 0% 1'230 C550 1% C650 CL65 1'274 1% D328 Ω Ο 0% Ω DA20 0% DA90 1% DC10 0% DC3 DH8 2'070 1'915 5'189 E145 0% F2TH 0% FK10 2'366 1'294 4'877 4% FK50 Ω Ω Ο FK70 5'434 1'592 3'968 12'143 10% HS257 LR35 0% LR55 Ο 0% Ω MD11 0% MD80 MD87 Ο Ο Ω Ω RJ100 4'864 6'525 2'472 15'106 13% SB20 1'119 1% SF34 0% TU54B 0% TU54M 0% YK42 Ω Ω 1'015 Total 1'653 2'336 6'166 6'595 41'034 37'330 17'147 5'056 119'192 Route 1% 2% 5% 6% 0% 34% 31% 14% 4% 1% 1% 100% 100%

File: ZRH15_G8T_06-22_s_rout.txt

Tabelle 6: Jährliche Landungen 2015, Grossflugzeuge, 06-22 Uhr

A3103 63 0 6 7 76 0 A319 11'056 21 2'182 651 13'910 1: A320 22'305 37 5'253 1'562 29'157 2 A321 6'424 14 1'446 536 8'420 7' A3302 3'979 20 358 1'811 6'168 5' A3403 3'091 22 376 1'152 4'641 4' A3406 28 0 4 65 97 0' AN12 15 0 0 0 15 0' A742 252 3 41 27 323 0'	Anteil: 0% 12% 25% 7% 5% 1% 0% 0%
A319 11'056 21 2'182 651 13'910 11'562 29'157 22'305 37 5'253 1'562 29'157 29'157 22'305 1'523 1'562 29'157 22'35 1'446 536 8'420 7' 8'420 7' 8'420 7' 8'420 7' 8'420 7' 8'420 7' 8'420 7' 8'420 7' 8'420 7' 8' 8'420 7' 8' 8'420 7' 8' 8'420 7' 8' 8' 20' 7' 8' 8'420 7' 8' 8'420 7' 8' 8'420 7' 8' 8'420 7' 8' 8'420 7' 8' 8'420 7' 8' 8'420 7' 8' 8'420 7' 8' 8'420 7' 8' 8'420 7' 8' 8'420 7' 8' 8'420 7' 8' 8'420 7' 8' 8'420 7' 8'<	12% 25% 7% 5% 14% 0% 0%
A320 22'305 37 5'253 1'562 29'157 2' A321 6'424 14 1'446 536 8'420 7' A3302 3'979 20 358 1'811 6'168 5' A3403 3'091 22 376 1'152 4'641 4' A3406 28 0 4 6'5 97 0' AN12 15 0 0 0 15 0' AT42 252 3 41 27 323 0'	25% 7% 5% 4% 0% 0%
A321 6'424 14 1'446 536 8'420 7' A3302 3'979 20 358 1'811 6'168 5' A3403 3'091 22 376 1'152 4'641 4' A3406 28 0 4 65 97 0' AN12 15 0 0 0 15 0' AT42 252 3 41 27 323 0'	7% 5% 1% 0% 0%
A3302 3'979 20 358 1'811 6'168 5' A3403 3'091 22 376 1'152 4'641 4' A3406 28 0 4 65 97 0' AN12 15 0 0 0 1'5 0' AT42 252 3 41 27 323 0'	5% 1% 0% 0% 0%
A3403 3'091 22 376 1'152 4'641 4' A3406 28 0 4 65 97 0' AN12 15 0 0 0 15 0' AT42 252 3 41 27 323 0'	1% 0% 0% 0%
A3406 28 0 4 65 97 0 AN12 15 0 0 0 15 0 AT42 252 3 41 27 323 0)%)%)%)%
AN12 15 0 0 0 15 00 AT42 252 3 41 27 323 0)%)%)%
AT42 252 3 41 27 323 0)%)%
)%
B7272 1 0 0 0 1 0	20/
B73F 2'269 3 271 84 2'627 2'	
	2%
	1%
)%
)%
)%
)%
)%)%
	1%
	1%
)%
	1%
)%
)% %
)%
	0%
	1%
)%
	0%
	1%
	1%
)%
	1%
)%
	10%
	۱%
)%
)%
)%
)%
)%
	13%
	۱%
)%
)%
TU54M 1 0 1 0 2 0)%
)%
Total 88'971 185 17'125 9'784 116'065	
Route 77% 0% 15% 8% 100%	
Piste 77% 0% 15% 8% 100%	

d	=	36
d n* _{g,t} T	=	64
Т	=	16
n	=	

235'257

ile: ZRH15_G8T_06-22_l_rout.txt

Tabelle 7: Jährliche Starts 2015, Grossflugzeuge, 22-23 Uhr

	RW	Y16	RW	Y28	RW	Y32	RW	Y34	1	
RC-Typ	E16	F16	128	K28	N32	O32	N34	O34	Total	Anteil
A3103	0	0	0	0	1	0	0	0	1	0%
A319	0	0	0	1	124	28	6	9	168	7%
A320	0	0	2	1	388	84	50	47	572	23%
A321	0	0	1	0	68	20	10	14	113	5%
A3302	1	0	0	0	175	77	16	8	277	11%
A3403	0	0	0	0	55	18	227	112	412	17%
A3406	0	0	0	0	0	0	1	0	1	0%
AN12	0	0	0	0	1	0	0	0	1	0%
AT42	0	0	0	0	0	2	0	0	2	0%
B73F	0	0	0	0	38	16	0	3	57	2%
B73S	0	0	0	0	5	0	0	0	5	0%
B7474	0	0	0	0	0	0	1	0	1	0%
B7572	0	0	0	0	1	0	0	0	1	0%
B7673	0	0	0	0	2	0	0	0	2	0%
B7772	0	0	0	0	175	52	20	9	256	10%
C550	0	0	0	0	4	0	0	0	4	0%
CL65	0	0	0	0	9	4	0	1	14	1%
D328	0	0	0	0	1	0	0	0	1	0%
DA90	0	0	0	0	10	1	0	0	11	0%
DH8	0	0	0	0	16	6	1	0	23	1%
E145	0	0	0	0	5	1	0	0	6	0%
F2TH	0	0	0	0	2	1	0	0	3	0%
FK10	0	0	0	0	67	34	50	75	226	9%
FK70	0	1	0	0	32	10	3	2	48	2%
HS257	0	0	0	0	2	2	1	0	5	0%
LR55	0	0	0	0	4	1	0	0	5	0%
RJ100	0	0	0	3	108	0	154	3	268	11%
SB20	0	0	0	0	2	0	1	2	5	0%
TU54B	0	0	0	0	0	0	1	0	1	0%
Total	1	1	3	5	1'295	357	542	285	2'489]
Route	0%	0%	0%	0%	52%	14%	22%	11%	100%	
Piste	0'	%	0	%	66	%	33	3%	100%]

File: ZRH15_G8T_22-23_s_rout.txt

Tabelle 8: Jährliche Landungen 2015, Grossflugzeuge, 22-23 Uhr

	RWY14	RWY16	RWY28	RWY34		
RC-Typ	S14	T16	P28	Q34	Total	Anteil:
A319	69	0	1'091	307	1'467	22%
A320	126	2	2'515	626	3'269	48%
A321	27	0	429	131	587	9%
A3302	2	0	1	0	3	0%
A3403	0	0	3	2	5	0%
B73F	1	0	18	10	29	0%
B73S	16	0	253	63	332	5%
B7474	0	0	0	1	1	0%
B7772	1	0	0	0	1	0%
C550	1	0	11	3	15	0%
CL65	1	0	26	7	34	1%
DA90	3	0	7	3	13	0%
DH8	0	0	3	3	6	0%
E145	0	0	5	2	7	0%
F2TH	1	0	5	1	7	0%
FK10	5	0	90	33	128	2%
FK70	20	0	333	86	439	7%
HS257	0	0	4	4	8	0%
LR55	0	0	1	3	4	0%
RJ100	25	0	271	89	385	6%
SB20	0	0	1	0	1	0%
Total	298	2	5'067	1'374	6'741	
Route	4%	0%	75%	20%	100%	
Piste	4%	0%	75%	20%	100%	

File: ZRH15_G8T_22-23_I_rout.txt

N _{g,n1}	=	9'230
d	=	365
n* _{g,n1}	=	25
Т	=	1 h
n _{g,n1}	=	25

Tabelle 9: Jährliche Starts 2015, Grossflugzeuge, 23-05 Uhr

	RW	Y16	RWY32		RWY34			
RC-Typ	E16	F16	N32	O32	N34	O34	Total	Anteil:
A319	0	0	13	2	3	2	20	1%
A320	0	3	50	8	27	22	110	6%
A321	2	2	17	19	14	40	94	5%
A3302	3	0	47	81	15	4	150	9%
A3403	11	13	2	3	751	417	1'197	68%
B73F	0	0	1	2	0	2	5	0%
B73S	0	0	1	0	1	0	2	0%
B7474	0	0	0	0	1	0	1	0%
B7772	0	2	7	6	1	1	17	1%
CL65	0	0	6	4	5	0	15	1%
DA90	0	0	3	0	0	0	3	0%
DH8	0	0	1	2	0	0	3	0%
E145	0	0	0	0	1	0	1	0%
F2TH	0	0	1	0	0	0	1	0%
FK10	1	1	13	9	15	28	67	4%
FK70	0	0	0	2	3	0	5	0%
HS257	0	0	1	1	0	0	2	0%
RJ100	0	0	17	1	47	1	66	4%
Total	17	21	180	140	884	517	1'759	
Route	1%	1%	10%	8%	50%	29%	100%	
Piste	2	%	18	1%	80)%	100%	1

File: ZRH15_G8T_23-05_s_rout.txt

Tabelle 10: Jährliche Landungen 2015, Grossflugzeuge, 23-05 Uhr

	RWY14	RWY16	RWY28	RWY34		_
RC-Typ	S14	T16	P28	Q34	Total	Anteil:
A319	7	2	60	16	85	14%
A320	31	7	200	73	311	50%
A321	1	1	40	18	60	10%
A3302	0	0	1	0	1	0%
A3403	0	0	1	0	1	0%
B73F	1	0	2	1	4	1%
B73S	1	0	8	1	10	2%
B7474	1	0	0	0	1	0%
B7673	1	0	1	0	2	0%
C550	0	0	1	0	1	0%
CL65	3	0	25	20	48	8%
D328	0	0	0	1	1	0%
DA90	0	0	2	0	2	0%
E145	0	0	1	0	1	0%
FK10	0	1	3	1	5	1%
FK70	4	1	25	4	34	5%
LR55	0	0	0	1	1	0%
RJ100	6	1	38	11	56	9%
TU54B	0	0	1	1	2	0%
Total	56	13	409	148	626	
Route	9%	2%	65%	24%	100%	
Piste	9%	2%	65%	24%	100%	

File: ZRH15_G8T_23-05_I_rout.txt

Tabelle 11: Jährliche Starts 2015, Grossflugzeuge, 05-06 Uhr

	RWY32		
RC-Typ	N32	Total	Anteil:
CL65	1	1	100%
Total	1	1	
Route	100%	100%	
Piste	100%	100%	

File: ZRH15_G8T_05-06_s_rout.txt

Tabelle 12: Jährliche Landungen 2015, Grossflugzeuge, 05-06 Uhr

	RWY16	RWY28	RWY34		
RC-Typ	T16	P28	Q34	Total	Anteil:
A319	0	1	0	1	17%
A3302	0	1	1	2	33%
A3403	1	0	0	1	17%
CL65	0	1	1	2	33%
Total	1	3	2	6	
Route	17%	50%	33%	100%	
Piste	17%	50%	33%	100%	

File: ZRH15_G8T_05-06_I_rout.txt

1	$N_{g,n3}$	=	7
0	d	=	365
ı	1* _{g,n3}	=	0
- -	Γ	=	1 h
1	1 _{g,n3}	=	0
_			

Bericht-Nr. 5214.011975

Tabelle 13: Substituierte und nicht berücksichtigte Flüge, Starts

	Substituierte Typen/Footprints						
		Alter RC-Typ/	Neuer RC-Typ/				
	Route	Fehlender Footprint	Verwendeter Footprint	Anzahl			
Uhr	N32	MD87	MD80	1			
	O32	A3103	A321	1			
-22	A10	B7772	A3302	1			
-90	E16	MD11	B7673	1			
	Total substitu	4					
	Anteil am Ges	amtverkehr		0.00%			

Substituierte Routen				
Alte Route	Neue Route	Anzahl Flüge		
B10	B10 C10			
V28	I28	4		
Total subsitui	11			
Anteil am Ges	0.00%			

Nicht berücksichtigte Flüge			
Route	RC-Typ	Anzahl	
-	-	-	
Total nicht be	rücks. Flüge	0	
Anteil am Ges	Anteil am Gesamtverkehr 0.00%		

Files: ZRH15_G8T_06-22_S.tabew1_report / ZRH15_G8T_06-22_selkt_pf.txt

	Substituierte Typen/Footprints			
	Alter RC-Typ/ Neuer RC-Typ/			
۱	Route	Fehlender Footprint	Verwendeter Footprint	Anzahl
23	O32	AT42 (22-23)	AT42 (06-22)	2
22-2	Total substituierte Flüge			2
2	Anteil am Ges	amtverkehr		0.02%

Files: ZRH15_G8T_22-23_S.tabew1_report / ZRH15_G8T_22-23_selkt_pf.txt

Substituierte Routen			
Alte Route	Neue Route	Anzahl Flüge	
-	-		
Total subsituierte Flüge		0	
Anteil am Gesamtverkehr		0.00%	

Nicht berücksichtigte Flüge				
Route	RC-Typ	Anzahl		
-	-	-		
Total nicht berücks. Flüge 0				
Anteil am Ges	amtverkehr	0.00%		

	Substituierte Typen/Footprints			
_	Alter RC-Typ/ Neuer RC-Typ/			
占	Route	Fehlender Footprint	Verwendeter Footprint	Anzahl
05	-	-	-	-
23-(Total substituierte Elüge		0	
7	Anteil am Gesamtverkehr			0.00%

Files: ZRH15_G8T_23-05_S.tabew1_report / ZRH15_G8T_23-05_selkt_pf.txt

	Substituierte Routen				
ĺ					
	Alte Route	Neue Route	Anzahl Flüge		
			-		
	Total subsituierte Flüge		0		
	Anteil am Gesamtverkehr		0.00%		

Nicht berücksichtigte Flüge			
Route	RC-Typ	Anzahl	
-	-	-	
Total nicht be	Total nicht berücks. Flüge 0		
Anteil am Ges	amtverkehr	0.00%	

	Substituierte Typen/Footprints			
		Alter RC-Typ/	Neuer RC-Typ/	
<u>Ş</u>	Route	Fehlender Footprint	Verwendeter Footprint	Anzahl
9	-	-	=	-
05-(Total substituierte Flüge			0
0	Anteil am Ges	amtverkehr		0.00%

Files: ZRH15_G8T_05-06_S.tabew1_report / ZRH15_G8T_05-06_selkt_pf.txt

Substituierte Routen		
Alte Route	Neue Route	Anzahl Flüge
		-
Total subsituierte Flüge 0		
Anteil am Ges	amtverkehr	0.00%

Nicht berücksichtigte Flüge		
Route	RC-Typ	Anzahl
-	-	-
Total nicht be	0	
Anteil am Ges	amtverkehr	0.00%

Bericht-Nr. 5214.011975

Tabelle 14: Substituierte und nicht berücksichtigte Flüge, Landungen

	Substituierte Typen/Footprints			
		Alter RC-Typ/	Neuer RC-Typ/	
Uhr	Route	Fehlender Footprint	Verwendeter Footprint	Anzahl
	T16	F2TH	FK70	1
-22	P28	TU54B (06-22)	TU54B (22-06)	1
90	Total substituierte Flüge			2
	Anteil am Gesamtverkehr			0.00%

Files: ZRH15_G8T_06-22_L.tabew1_report / ZRH15_G8T_06-22_selkt_pf.txt

Substituierte Routen			
Alte Route Neue Route Anzahl Flüge			
Alte Route	Alte Route Neue Route		
-		-	
Total subsitui	0		
Anteil am Ges	amtverkehr	0.00%	
7 C C	anner en kenn	0.0070	

Nicht berücksichtigte Flüge							
Route RC-Typ Anzahl							
Total nicht berücks. Flüge 0							
Anteil am Ges	Anteil am Gesamtverkehr 0.00%						

		Substituierte Typen/Footprints							
_		Alter RC-Typ/	Neuer RC-Typ/						
Uhr	Route	Fehlender Footprint	Verwendeter Footprint	Anzahl					
23	-	-	-	-					
22-2	Total substitu	0							
7	Anteil am Gesamtverkehr								

Files: ZRH15_G8T_22-23_L.tabew1_report / ZRH15_G8T_22-23_selkt_pf.txt

Substituierte Routen							
Alte Route	Neue Route	Anzahl Flüge					
-	-						
Total subsituierte Flüge 0							
Anteil am Ges	0.00%						

Nicht berücksichtigte Flüge								
Route	RC-Typ	Anzahl						
-	-	-						
Total nicht berücks. Flüge 0								
Anteil am Gesamtverkehr 0.00%								

	Substituierte Typen/Footprints							
		Alter RC-Typ/	Neuer RC-Typ/					
_	Route	Fehlender Footprint	Verwendeter Footprint	Anzahl				
Uhr	S14	B73S (23-05)	B73S (22-23)	1				
05	T16	A321 (23-05)	A321 (06-22)	1				
23-(Q34	FK10 (23-05)	FK10 (22-23)	1				
7	Total substitu	ierte Flüge		3				
	Anteil am Ges	0.13%						

Files: ZRH15_G8T_23-05_L.tabew1_report / ZRH15_G8T_23-05_selkt_pf.txt

Substituierte Routen							
Alte Route Neue Route Anzahl Flüge							
-	-						
Total subsituierte Flüge 0							
Anteil am Gesamtverkehr 0.00%							
Anteil am Gesamtverkehr 0.00%							

Nicht berücksichtigte Flüge								
Route RC-Typ Anzal								
-	-							
Total nicht berücks. Flüge 0								
Anteil am Gesamtverkehr 0.00%								

		Substituierte Typen/Footprints							
		Alter RC-Typ/	Neuer RC-Typ/						
占	Route	Fehlender Footprint	Verwendeter Footprint	Anzahl					
90	-	-	-	-					
7	Total substitu	0							
0	Anteil am Gesamtverkehr								

Files: ZRH15_G8T_05-06_L.tabew1_report / ZRH15_G8T_05-06_selkt_pf.txt

Substituierte Routen								
Alte Route Neue Route Anzahl Flüge								
-								
Total subsituierte Flüge 0								
Anteil am Gesamtverkehr 0.00%								

Nicht berücksichtigte Flüge							
Route	RC-Typ	Anzahl					
-							
Total nicht berücks. Flüge 0							
Anteil am Ges	0.00%						

Tabelle 15: Nicht identifizierbare / berücksichtigte Flugzeuge

IMM	TYPE	Triebwerk	TYP10	MTOW [kg]	Bewegungen
N895EE	E550-500	AS907-1-1A		17200	2
RA2151G	EPIC-LT	PT6A-67A		3402	2
Total					4

qry94_NichtIdentifizierbar Export.xls

<u>Legende</u>

IMMImmatrikulationTYPETypenbezeichnungTriebwerkTriebwerksbezeichnung

TYP10 Referenztyp gem. Empa Zuordnung (fehlt)

MTOW Max. Abfluggewicht

Tabelle 16: Anzahl simulierte Flüge pro Typ und Route, Grossflugzeuge, Starts, 06-22 Uhr

RC							Po	ute					
A3193	P.C	Δ10	C10	F16	F16	G16			N32	N34	033	034	Total
A319		Alu		LIU		010		RZU		1454	032		
A320		254		20				E'262		1/12	669		
A321													
A3302													
A3403 A3406 A340													
A3406		10											
AN12			0	410				10					
AT42 8 197 35 52 26 1 318 B7272 17 98 3 110 1482 282 422 4 111 1 253 B738 34 47 2 45 1033 908 325 7 68 1 247 B739 43 27 733 55 99 38 1 996 B7473 2 2 2 1 1 1 2 2 B74474 111 7 3 3 1 2 23 B748P 1 2 1 10 8 3 1 2 23 B7572 7 1 2 1 12 84 17 B7673 11 1 1146 26 17 243 88 24 17 B7673 11 1 1146 26 17 243 88 24 17 B7673 11 1 1140 539 404 9 106 29 40 11 122 C130 1 3 1 5 C550 85 86 3 1399 1719 346 5 93 1 372 C650 1 3 3 1 5 C650 1 3 3 4 5 5 DA20 19 16 20 12 6 39 DA20 19 16 20 20 12 6 DC10 1 1 1 1 1 1 1 1 DC3 3 1 1 1 1 1 1 1 C185 3 9 147 2 7 3 2018 1879 822 1 131 1 506 E145 15 14 2 2 299 210 59 14 553 EXTENDED S					86						1	3	
B7272		1								1	00	4	
B73F			8				197		52		26	1	
B73S		4-7	00	•	440		41400		400		444		
B73V													
B7473		34		2						,			
B7474			43	•			733	55	99		38	1	
B74SP							_						
B7572				11	/			_					
B7672		_		_						1			
B7673		/	1	2	1		12		1/				
B7772													
C130		11											
C550 85 86 1'389 1'719 346 5 93 1 372 C650 1 71 21 7 1 1 101 101 101 101 101 101 101 101 101 101 101 101 101 101 101 102 <			17	140	539					29	40	11	
C650 1 1 71 21 7 1 101 101 101 101 101 102													
CL65 14 38 1 2 504 445 159 1 72 1 1'23 D328 1 20 12 6 39 39 DA20 2 2 2 2 2 DA90 19 16 198 464 113 4 11 1 82 DC10 1		85								5		1	
D328													
DA20			38	1	2					1	72	1	
DA90		1					20		6				
DC10													
DC3		19	16				198		113	4	11	1	
DH8 49 147 2 7 3 2'018 1'879 822 1 131 1 5'06 E145 15 14 2 239 210 59 14 556 F2TH 7 6 172 268 69 14 536 FK10 56 123 11 36 2'317 1'265 640 4 313 6 4'77 FK50 1 1 1 1 2 2 FK70 155 341 19 53 5'297 3'889 1'553 39 504 15 11'86 HS257 23 12 227 358 81 1 22 724 LR35 2 2 66 58 12 5 143 LR55 3 9 171 178 36 1 10 408 MD11 1 2 2 1													
E145 15 14 2 239 210 59 14 553 F2TH 7 6 172 268 69 14 536 FK10 56 123 11 36 2'317 1'265 640 4 313 6 4'77 FK50 1 1 1 1 2 2 6 14 155 341 19 53 5'297 3'889 1'553 39 504 15 11'86 11'86 14'37 11'86 14'37 11'86 14'37 11'86 14'37 11'86 14'37 11'86 14'37 11'86 11'86 14'38													
F2TH 7 6 172 268 69 14 536 FK10 56 123 11 36 2'317 1'265 640 4 313 6 4'77 FK50 1 1 1 1 2 1 2 1 1 1 1 1 1 1 2 1 1 1 2 2 7 724 1 1 2 1 1 2 1 1 4 4 3 1 1 4 4 3 1 1 4 4 1 1 1				2		3				1		1	5'060
FK10 56 123 11 36 2'317 1'265 640 4 313 6 4'77 FK50 1 1 1 1 2 2 11'86 155 341 19 53 5'297 3'889 1'553 39 504 15 11'86 HS257 23 12 227 358 81 1 22 724 LR35 2 66 58 12 5 143 40 408 40					2								
FK50 1													
FK70 155 341 19 53 5'297 3'889 1'553 39 504 15 11'86 HS257 23 12 227 358 81 1 22 724 LR35 2 66 58 12 5 143 LR55 3 9 171 178 36 1 10 408 MD11 1 2 2 1 1 1 1 1 1 1 1 1 1 1 1 6 6 7 10 1		56	123	11	36				640	4	313	6	4'771
HS257													
LR35 2 66 58 12 5 143 LR55 3 9 171 178 36 1 10 408 MD11				19	53							15	11'865
LR55 3 9 171 178 36 1 10 408 MD11		23								1			
MD11 MD80													143
MD80 1 2 2 1 6 RJ100 296 301 5 17 4'771 6'406 2'405 52 527 5 14'78 SB20 27 11 1 185 701 176 3 1 110 SF34 3 334 40 42 5 424 TU54B 1 2 1 4 4 TU54M 2 2 1 3 3		3	9				171	178	36		10		
RJ100 296 301 5 17 4'771 6'406 2'405 52 527 5 14'78 SB20 27 11 1 1 185 701 176 3 1 1'10 SF34 3 34 40 42 5 424 TU54M 2 2 1 2 1 YK42 2 1 1 33										1			
SB20 27 11 1 185 701 176 3 1 1'10 SF34 3 334 40 42 5 424 TU54B 1 2 1 4 TU54B 2 2 2 YK42 2 1 3													-
SF34 3 334 40 42 5 424 TU54B 1 2 1 4 TU54M 2 2 2 YK42 2 1 3	RJ100			5	17		4'771	6'406		52	527	5	14'785
TU54B 1 2 1 4 TU54M 2 2 YK42 2 1 3			11			1		701	176	3			1'105
TU54M 2 2 2 YK42 2 1 3		3					334		42		5		424
YK42 2 1 3	TU54B						1			1			4
	TU54M							2					2
Total 1/640 2/224 6/027 6/467 A 44/299 27/727 16/069 940 6/002 004 44/0/2													
10tal 1049 2 324 0 021 0 401 4 41 300 31 131 10 900 640 5 003 991 119 3	Total	1'649	2'324	6'027	6'467	4	41'388	37'737	16'968	840	5'003	991	119'398

Files: ZRH15_G8T_06-22_*_ SIM_FLUEGE.LIS

Bewegungen Grossflugzeuge (Beilage 1) 235'257'
Total simulierte Bewegungen 235'473
Davon Grossflugzeuge 229'526
Davon Kleinluftahrzeuge 5'947
Anteil gesamthaft simuliert (%) 100
Anteil Grossflugzeuge simuliert (%) 98
Anteil Kleinfluftfahrzeuge simuliert (%) 3

97% aller simulierter Bewegungen 3% aller simulierter Bewegungen

Tabelle 17: Anzahl simulierte Flüge pro Typ und Route, Grossflugzeuge, Landungen, 06-22 Uhr

			Route		
RC	P28	Q34	S14	T16	Total
A3103	6	6	61		73
A319	2'111	635	10'811	19	13'576
A320	5'099	1'522	21'758	35	28'414
A321	1'387	521	6'212	13	8'133
A3302	349	1'763	3'885	20	6'017
A3403	366	1'125	3'018	22	4'531
A3406	4	65	28		97
AN12	7	05	15		15
AT42	47	25	260	3	335
B7272	47	25	1	3	1
B73F	260	83	2'213	3	2'559
				3	
B73S	192	74	1'873	3	2'142
B73V	82	33	880		995
B7473		_	5		5
B7474	2	2	17	1	22
B74SP	5	1	18		24
B7572	12		115		127
B7672			1		1
B7673	66	388	1'091	3	1'548
B7772	135	688	738	4	1'565
C130			5		5
C550	399	98	3'233	4	3'734
C650	8	3	91		102
CL65	158	56	961	1	1'176
D328	7	4	29		40
DA20			2		2
DA90	91	52	685		828
DC10			1		1
DC3	1		1		2
DH8	680	192	4'203	9	5'084
E145	63	12	481		556
F2TH	74	14	443		531
FK10	1'023	471	3'429	4	4'927
FK50	1 023	47.1	2	-	2
FK70	1'540	636	9'221	11	11'408
HS257	106	18	605	11	729
LR35	13	7	124		144
LR55	44	9	359		412
MD11			2		2
MD80	2	1	1		4
MD87	1		1		1
RJ100	2'435	941	11'251	20	14'647
SB20	95	159	846	5	1'105
SF34	45	2	399		446
TU54B	1	1	1		2
TU54M	1		1		2
YK42	1		3		3
Total	16'908	9'607	89'380	180	116'075

Files: ZRH15_G8T_06-22_*_ SIM_FLUEGE.LIS

Beilage 4 Seite 1 von 7

Tabelle 18: Anzahl simulierte Flüge pro Typ und Route, Grossflugzeuge, Starts, 22-23 Uhr

RC E16 F16 128 K28 N34 032 034 Total N32 A3103 A319 122 27 165 6 9 A320 2 375 47 49 84 558 A321 67 20 13 110 A3302 172 15 75 271 A3403 54 220 18 110 402 A3406 AN12 1 B73F 37 16 56 3 B73S 5 5 B7474 B7572 B7673 2 2 B7772 170 20 51 250 C550 13 13 CL65 9 14 D328 DA90 10 11 DH8 15 22 6 E145 5 6 F2TH 2 3 FK10 66 33 221 49 73 FK70 32 10 2 48 HS257 2 2 5 LR55 4 5 RJ100 106 153 3 265 SB20 2 2 5 1 TU54B Total 1'274 530 350 280 2'444

Files: ZRH15_G8T_22-23_*_ SIM_FLUEGE.LIS

Bewegungen Grossflugzeuge (Beilage 1) 9'230
Total simulierte Bewegungen 9'045
Davon Grossflugzeuge 9'011
Davon Kleinluftfahrzeuge 34
Anteil Grossflugzeuge simuliert (%) 98
Anteil Kleinfluftfahrzeuge simuliert (%) 0

100% aller simulierter Bewegungen 0% aller simulierter Bewegungen

Tabelle 19: Anzahl simulierte Flüge pro Typ und Route, Grossflugzeuge, Landungen, 22-23 Uhr

			Route		
RC	P28	Q34	S14	T16	Total
A319	1'065	301	68		1'434
A320	2'443	611	121	2	3'177
A321	420	129	27		576
A3302	1		2		3
A3403	3	2			5
B73F	17	10	1		28
B73S	249	62	15		326
B7474		1			1
B7772			1		1
C550	34	4	2		40
CL65	26	7	1		34
DA90	7	3	3		13
DH8	3	3			6
E145	5	2			7
F2TH	5	1	1		7
FK10	86	32	5		123
FK70	324	85	20		429
HS257	4	4			8
LR55	1	3			4
RJ100	267	86	25		378
SB20	1				1
Total	4'961	1'346	292	2	6'601

Files: ZRH15_G8T_22-23_*_ SIM_FLUEGE.LIS

Tabelle 20: Anzahl simulierte Flüge pro Typ und Route, Grossflugzeuge, Starts, 23-05 Uhr

				Route			
RC	E16	F16	N32	N34	O32	O34	Total
A319			13	3	2	2	20
A320		3	50	27	8	21	109
A321	2	2	17	14	19	39	93
A3302	3		46	14	81	4	148
A3403	11	13	2	737	3	410	1'176
B73F			1		2	2	5
B73S			1	1			2
B7474				1			1
B7772		2	7	1	6	1	17
CL65			5	4	4		13
DA90			3				3
DH8			1		2		3
E145				1			1
F2TH			1				1
FK10	1	1	12	15	9	27	65
FK70				3	2		5
HS257			1		1		2
RJ100			17	46	1	1	65
Total	17	21	177	867	140	507	1'729

Files: ZRH15_G8T_23-05_*_ SIM_FLUEGE.LIS

# Bewegungen Grossflugzeuge (Beilage 1)	2'385
Total simulierte Bewegungen	2'343
Davon Grossflugzeuge	2'336
Davon Kleinluftfahrzeuge	7
Anteil gesamthaft simuliert (%)	98
Anteil Grossflugzeuge simuliert (%)	98
Anteil Kleinfluftfahrzeuge simuliert (%)	0

99% aller simulierter Bewegungen1% aller simulierter Bewegungen

Tabelle 21: Anzahl simulierte Flüge pro Typ und Route, Grossflugzeuge, Landungen, 23-05 Uhr

	Route				
RC	P28	Q34	S14	T16	Total
A319	58	15	7	2	82
A320	197	72	29	7	305
A321	39	15	1		55
A3302	1				1
A3403	1				1
B73F	2	1	1		4
B73S	8	1			9
B7474			1		1
B7673	1		1		2
C550	8				8
CL65	25	19	2		46
D328		1			1
DA90	2				2
E145	1				1
FK10	3			1	4
FK70	25	4	4	1	34
LR55		1			1
RJ100	38	10	6	1	55
TU54B	1	1			2
Total	410	140	52	12	614

Files: ZRH15_G8T_23-05_*_ SIM_FLUEGE.LIS

Empa, Abteilung Akustik / Lärmminderung
Auftraggeber: Flughafen Zürich AG
Bericht-Nr. 5214.011975

Tabelle 22: Anzahl simulierte Flüge pro Typ und Route, Grossflugzeuge, Starts, 05-06 Uhr

	Route			
RC	N32 Total			
C550	2	2		
Total	2	2		

Files: ZRH15_G8T_05-06_*_ SIM_FLUEGE.LIS

# Bewegungen Grossflugzeuge (Beilage 1)	7
Total simulierte Bewegungen	8
Davon Grossflugzeuge	7
Davon Kleinluftfahrzeuge	1
Anteil gesamthaft simuliert (%)	114
Anteil Grossflugzeuge simuliert (%)	100
Anteil Kleinfluftfahrzeuge simuliert (%)	14
Arten Kienmuttanizeuge simuliert (70)	

88% aller simulierter Bewegungen 13% aller simulierter Bewegungen

Tabelle 23: Anzahl simulierte Flüge pro Typ und Route, Grossflugzeuge, Landungen, 05-06 Uhr

	Route				
RC	P28	Q34	T16	Total	
A319	1			1	
A3302	1	1		2	
A3403			1	1	
CL65	1	1		2	
Total	3	2	1	6	

Files: ZRH15_G8T_05-06_*_ SIM_FLUEGE.LIS

Tabelle 24: Prozentualer Anteil FT- und VG-Starts pro Typ und Route in der Simulation, 06-22 Uhr

					Ro	ute				
RC	Performance	A10	C10	E16	F16	I28	K28	N32	N34	O 34
A320	FT	46	52	55	81	40	41	38	36	43
	VG	54	48	45	19	60	59	62	64	57
A321	FT	63	47	100	98	38	57	58	55	82
	VG	37	53	0	2	62	43	42	45	18
A3302	FT	20	29	95	90	2	20	74	80	57
	VG	80	71	5	10	98	80	26	20	43
A3403	FT		0	87	65	0	0	5	84	94
	VG		100	13	35	100	100	95	16	6
B73F	FT	0	11	0	60	9	0	8	25	0
	VG	100	89	100	40	91	100	92	75	100
B73S	FT	3	40	0	60	36	0	17	0	0
	VG	97	60	100	40	64	100	83	100	100

Files: ZRH15_G8T_06-22_*_ SIM_FLUEGE.LIS

Bericht-Nr. 5214.011975

Tabelle 25: Prozentualer Anteil FT- und VG-Starts pro Typ und Route in der Simulation, 22-23 Uhr

					Route			
RC	Performance	E16	I28	K28	N32	N34	O32	O34
A320	FT		50	0	34	35	27	32
	VG		50	100	66	65	73	68
A321	FT		0		63	78	60	92
	VG		100		37	22	40	8
A3302	FT	100			10	47	0	0
	VG	0			90	53	100	100
A3403	FT				0	97	0	92
	VG				100	3	100	8
B73F	FT				0		13	0
	VG				100		88	100
B73S	FT				20			
	VG				80			

Files: ZRH15_G8T_22-23_*_ SIM_FLUEGE.LIS

Bericht-Nr. 5214.011975

Tabelle 26: Prozentualer Anteil FT- und VG-Starts pro Typ und Route in der Simulation, 23-05 Uhr

				Rou	ite		
RC	Performance	E16	F16	N32	N34	O 32	034
A320	FT		33	22	26	50	86
	VG		67	78	74	50	14
A321	FT	50	100	82	93	89	100
	VG	50	0	18	7	11	0
A3302	FT	33		11	79	1	0
	VG	67		89	21	99	100
A3403	FT	91	85	50	95	0	86
	VG	9	15	50	5	100	14
B73F	FT			0		0	0
	VG			100		100	100
B73S	FT			100	100		
	VG			0	0		

Files: ZRH15_G8T_23-05_*_ SIM_FLUEGE.LIS

Keine Flüge mit FT-Performance in der Zeitperiode zwischen 05-06 Uhr.

Tabelle 27: Akustische Kenndaten, Typenzuordnung, Landung (AP), [RC2012_01]

RC-Typ	RC BEZEICHNUNG	L _{A,max}	Theta(L _{A,max})	L _{AE}	Cutback	zugeordnete Flugzeugtypen (TYP10)
		[dB]	[°]	[dB]	[dB]	
A109K	RCLAPA109K	73.0	86.4	81.8	0	A139, B429
A109S	RCLAPA109S	71.4	84.2	80.2	0	A109E, A109S, AS350, AS355
A3103	RCLAPA3103	78.4	99.8	88.2	0	A3103
A319	RCLAPA319	77.5	96.3	85.5	0	A318, A319, BCS1
A320	RCLAPA320	77.5	97.5	85.7	0	A320
A321	RCLAPA321	78.5	97.9	86.8	0	A321
A3302	RCLAPA3302	76.7	104.7	87.2	0	A3302, A3303
A3403	RCLAPA3403	75.7	104.7	86.2	0	A3402, A3403, A3405, A380
A3406	RCLAPA3406	77.2	104.7	87.7	0	A3406
AN12	RCLAPAN12	77.1	65.3	86.3	0	AN12, AN26
AS332	RCLAPAS332	76.3	82.4	85.3	0	AS332, AS532, S76, S92
AT42	RCLAPAT42	74.1	93.4	82.8	0	AT423, AT425, AT72, AT722, SH36, SW3, SW4
B206	RCLAPB206	73.8	90.0	81.8	0	B105, B206, B407
B7272	RCLAPB7272	84.3	110.7	92.4	0	B7271
B73F	RCLAPB73F	79.3	101.8	86.9	0	B7378, B7379, B73F
B73S	RCLAPB73S	78.2	103.1	85.8	0	B7377, B73S
B73V	RCLAPB73V	77.6	105.7	85.1	0	B7376, B73V
B7473	RCLAPB7473	89.5	109.2	97.4	0	A124
B7474	RCLAPB7474	80.8	96.5	91.1	0	B7474, B7478
B74SP	RCLAPB74SP	80.8	96.5	91.1	0	B74SP
B7572	RCLAPB7572	77.3	101.0	87.2	0	B7572
B7672	RCLAPB7672	77.2	104.7	87.7	0	B7672
B7673	RCLAPB7673	77.2	104.7	87.7	0	B7673, B7674
B7772	RCLAPB7772	77.0	104.7	87.5	0	B7772, B7773, B7878, B7879
BE20	RCLAPBE20	68.4	81.6	77.4	0	AC690, B190, B350, BE10, BE20, BE30, BE9L, BE9T, F406, PA31T, PA42
BE35	RCLAPBE35	56.9	90.0	64.0	-6	BE23, BE33, BE35, BE36, DR40, M20T, PA28, R300
BE60	RCLAPBE60	69.9	90.0	77.0	-6	BE60, DA42, PA31
C130	RCLAPC130	74.4	65.3	83.6	0	C130
C150	RCLAPC150	52.1	90.0	59.2	-6	AS02, C150, D11, DR10, DR44, J3C, PA11
C152	RCLAPC152	50.8	90.0	57.9	-6	A210, C152, COL4, DA20D, E300, E400, HUSK, P06T, SIRA, WT9
C172	RCLAPC172	54.4	90.0	61.5	-6	C172, DA40, M20, RV7, RV8, SR20, SR22
C182	RCLAPC182	59.1	90.0	66.2	-6	AC11, C182, C206, PA23, PA28R, PA28T, PA34, PA44, PA46, R90R, TB20
C340	RCLAPC340	65.8	90.0	72.9	-6	AEST, BE58, C303, C337, C340, C402
C421	RCLAPC421	64.0	90.0	71.1	-6	C421
C550	RCLAPC550	65.9	96.5	75.3	0	BJ40, C501, C510, C525, C550, C551, C560, C560X, E50P, E55P, EA50, MU30, PRM1
C650	RCLAPC650	71.6	98.0	80.2	0	C650
CL65	RCLAPCL65	70.8	68.0	80.8	0	C750, CL60, CL65

ZRH15_5214011975_TYPENZUO.DOC

Beilage 5
Seite 1 von 5

Tabelle 27 (Forts.): Akustische Kenndaten, Typenzuordnung, Landung (AP), [RC2012_01]

RC-Typ	RC BEZEICHNUNG	<i>L_{A,max}</i> [dB]	Theta(L _{A,max}) [°]	L _{AE} [dB]	Cutback [dB]	zugeordnete Flugzeugtypen (TYP10)
D328	RCLAPD328	74.4	66.4	83.7	0	D328
DA20	RCLAPDA20	77.6	107.6	83.9	0	DA10, DA20
DA90	RCLAPDA90	71.6	100.3	79.8	0	DA50, DA90, FA7X
DC10	RCLAPDC10	82.9	103.9	92.4	0	C17
DC3	RCLAPDC3	76.7	74.6	85.3	-6	CONI, DC6, JU52
DH8	RCLAPDH8	69.8	65.3	79.0	0	DH8, DH83, DH84
E145	RCLAPE145	69.6	68.0	79.6	-6	CL30, CL350, E135, E145
EC145	RCLAPEC145	69.8	89.1	79.7	0	EC145, EC155
EC635	RCLAPEC635	71.0	66.3	80.8	0	EC120, EC130, EC135, EC635
F2TH	RCLAPF2TH	72.1	100.3	80.3	0	F2TH
FK10	RCLAPFK10	72.5	105.9	82.3	0	FK10
FK50	RCLAPFK50	76.7	93.3	85.1	0	FK50
FK70	RCLAPFK70	69.9	95.2	79.8	0	B7172, CL100, CL70, CL90, E170, E175, E190, E195, FK70, G4, G5, G650, GLEX
HS257	RCLAPHS257	72.4	102.6	80.7	0	AJ25, BA10, G150, HS257
LR35	RCLAPLR35	72.9	103.1	81.8	0	LR31, LR35, LR36, LR40, LR45
LR55	RCLAPLR55	69.5	103.1	78.4	0	C680, D328J, G280, GALX, HA4T, LR55, LR60, LR75
MC01	RCLAPMC01	48.4	90.0	55.5	-6	AAT3, DV20, P92
MD11	RCLAPMD11	81.1	102.7	91.3	0	IL96, MD11
MD80	RCLAPMD80	77.2	108.9	85.2	0	G3, MD82
MD87	RCLAPMD87	75.4	107.6	83.6	0	MD87
P3	RCLAPP3	61.2	90.0	68.3	-6	C180
PC12	RCLAPPC12	57.9	90.0	65.0	-6	C208, C425, KODI, P180, PC12
PC7	RCLAPPC7	62.9	90.0	70.0	-6	PA46T, PC6, PC7, TBM7, TBM8
R44	RCLAPR44	69.0	90.0	77.0	0	EN48, G2CA, H269, H500, MD500, MD900, R22, R44, R66
RJ100	RCLAPRJ100	74.7	103.7	82.4	-6	BA46, RJ100, RJ70, RJ85
SB20	RCLAPSB20	69.7	88.6	79.5	0	SB20
SF34	RCLAPSF34	74.7	74.6	83.3	0	BA31, BA32, C295, E120, MU2, SF34
TU54B	RCLAPTU54B	87.7	100.9	95.6	0	IL76, TU54B
TU54M	RCLAPTU54M	82.0	101.4	90.8	0	YK40
YK42	RCLAPYK42	80.6	108.9	88.6	0	AN72

 $File: qry90_Typenzuordnung_LAP_SVG_SFT_FuerBericht.xls\ / qry90a_Typenzuordnung_LAP_Export$

ZRH15_5214011975_TYPENZUO.DOC

Beilage 5
Seite 2 von 5

Tabelle 28: Akustische Kenndaten, Typenzuordnung, Start (VG), [RC2012_01]

RC-Typ	RC BEZEICHNUNG	L _{A,max}	Theta(L _{A,max})	L _{AE}	Cutback	zugeordnete Flugzeugtypen (TYP10)
кс-тур	RC BLZEICHNONG	[dB]	[°]	[dB]	[dB]	zugeorunete riugzeugtypen (TTT 10)
A109K	RCSVGA109K	73.0	77.4	81.2	0	A139, B429
A109S	RCSVGA109S	73.0	79.5	80.7	0	A109E, A109S, AS350, AS355
A3103	RCSVGA3103	89.0	96.1	96.8	0	A3103
A319	RCSVGA319	84.5	96.1	93.2	-0.3	A318, A319, BCS1
A320	RCSVGA320	86.0	97.9	94.1	-0.1	A320
A321	RCSVGA321	87.8	98.3	95.8	-0.3	A321
A3302	RCSVGA3302	91.0	101.0	99.2	-2.4	A3302, A3303
A3403	RCSVGA3403	85.0	96.8	94.3	0	A3402, A3403, A3405, A380
A3406	RCSVGA3406	90.1	91.4	97.8	0	A3406
AN12	RCSVGAN12	80.6	85.9	86.6	0	AN12, AN26
AS332	RCSVGAS332	76.3	80.6	84.5	0	AS332, AS532, S76, S92
AT42	RCSVGAT42	76.7	85.9	82.8	0	AT423, AT425, AT72, AT722, SH36, SW3, SW4
B206	RCSVGB206	72.2	90.0	80.2	0	B105, B206, B407
B7272	RCSVGB7272	98.8	106.0	107.1	-2.6	B7271
B73F	RCSVGB73F	87.4	97.8	94.7	0	B7378, B7379, B73F
B73S	RCSVGB73S	87.5	98.4	94.7	0	B7377, B73S
B73V	RCSVGB73V	86.0	97.6	93.2	-0.1	B7376, B73V
B7473	RCSVGB7473	94.1	99.3	101.8	0	A124
B7474	RCSVGB7474	90.8	97.5	98.3	0	B7474, B7478
B74SP	RCSVGB74SP	94.0	98.9	101.1	-0.6	B74SP
B7572	RCSVGB7572	86.6	103.0	95.3	-1.2	B7572
B7672	RCSVGB7672	92.3	98.7	99.3	-0.2	B7672
B7673	RCSVGB7673	91.5	103.5	99.7	0	B7673, B7674
B7772	RCSVGB7772	88.1	96.1	95.9	0	B7772, B7773, B7878, B7879
BE20	RCSVGBE20	76.5	80.9	82.8	0	AC690, B190, B350, BE10, BE20, BE30, BE9L, BE9T, F406, PA31T, PA42
BE35	RCSVGBE35	72.0	90.0	79.0	-4	BE23, BE33, BE35, BE36, DR40, M20T, PA28, R300
BE60	RCSVGBE60	85.0	90.0	92.0	-7	BE60, DA42, PA31
C130	RCSVGC130	76.2	85.9	82.2	0	C130
C150	RCSVGC150	67.2	90.0	74.2	-4	AS02, C150, D11, DR10, DR44, J3C, PA11
C152	RCSVGC152	65.9	90.0	72.9	-4	A210, C152, COL4, DA20D, E300, E400, HUSK, P06T, SIRA, WT9
C172	RCSVGC172	69.5	90.0	76.5	-4	C172, DA40, M20, RV7, RV8, SR20, SR22
C182	RCSVGC182	74.2	90.0	81.2	-4	AC11, C182, C206, PA23, PA28R, PA28T, PA34, PA44, PA46, R90R, TB20
C340	RCSVGC340	80.9	90.0	87.9	-7	AEST, BE58, C303, C337, C340, C402
C421	RCSVGC421	79.1	90.0	86.1	-7	C421
C550	RCSVGC550	80.3	112.1	88.4	0	BJ40, C501, C510, C525, C550, C551, C560, C560X, E50P, E55P, EA50, MU30, PRM1
C650	RCSVGC650	85.8	119.5	93.6	0	C650
CL65	RCSVGCL65	76.6	105.7	85.2	0	C750, CL60, CL65

ZRH15_5214011975_TYPENZUO.DOC

Beilage 5
Seite 3 von 5

Tabelle 28 (Forts.): Akustische Kenndaten, Typenzuordnung, Start (VG), [RC2012_01]

RC-Тур	RC BEZEICHNUNG	<i>L_{A,max}</i> [dB]	Theta(L _{A,max}) [°]	L _{AE} [dB]	Cutback [dB]	zugeordnete Flugzeugtypen (TYP10)
D328	RCSVGD328	74.7	83.4	81.6	0	D328
DA20	RCSVGDA20	81.4	106.3	88.7	0	DA10, DA20
DA90	RCSVGDA90	86.2	102.3	93.1	0	DA50, DA90, FA7X
DC10	RCSVGDC10	93.2	101.8	101.3	0	C17
DC3	RCSVGDC3	82.3	71.7	90.9	0	CONI, DC6, JU52
DH8	RCSVGDH8	76.2	85.9	82.2	0	DH8, DH83, DH84
E145	RCSVGE145	78.4	105.7	87.0	0	CL30, CL350, E135, E145
EC145	RCSVGEC145	69.7	83.7	77.5	0	EC145, EC155
EC635	RCSVGEC635	65.3	92.9	73.2	0	EC120, EC130, EC135, EC635
F2TH	RCSVGF2TH	80.6	105.6	87.9	0	F2TH
FK10	RCSVGFK10	88.2	107.9	95.4	-2.4	FK10
FK50	RCSVGFK50	76.7	85.7	84.1	0	FK50
FK70	RCSVGFK70	84.2	110.2	91.5	0	B7172, CL100, CL70, CL90, E170, E175, E190, E195, FK70, G4, G5, G650, GLEX
HS257	RCSVGHS257	84.4	105.6	91.7	0	AJ25, BA10, G150, HS257
LR35	RCSVGLR35	82.5	113.9	90.7	0	LR31, LR35, LR36, LR40, LR45
LR55	RCSVGLR55	81.4	107.1	89.3	0	C680, D328J, G280, GALX, HA4T, LR55, LR60, LR75
MC01	RCSVGMC01	63.4	90.0	70.4	-4	AAT3, DV20, P92
MD11	RCSVGMD11	94.0	98.9	101.1	-0.6	IL96, MD11
MD80	RCSVGMD80	93.3	107.9	100.3	-1.8	G3, MD82
MD87	RCSVGMD87	92.6	107.4	99.4	0	MD87
P3	RCSVGP3	80.3	90.0	87.3	-4	C180
PC12	RCSVGPC12	73.0	90.0	80.0	-4	C208, C425, KODI, P180, PC12
PC7	RCSVGPC7	78.0	90.0	85.0	-4	PA46T, PC6, PC7, TBM7, TBM8
R44	RCSVGR44	68.2	90.0	76.2	0	EN48, G2CA, H269, H500, MD500, MD900, R22, R44, R66
RJ100	RCSVGRJ100	81.9	104.2	89.8	0	BA46, RJ100, RJ70, RJ85
SB20	RCSVGSB20	74.3	73.8	82.7	0	SB20
SF34	RCSVGSF34	76.1	80.1	82.7	0	BA31, BA32, C295, E120, MU2, SF34
TU54B	RCSVGTU54B	100.0	105.0	106.8	-2.6	IL76, TU54B
TU54M	RCSVGTU54M	93.9	107.0	101.6	-0.5	YK40
YK42	RCSVGYK42	93.9	102.1	99.6	0	AN72

 $File: qry90_Typenzuordnung_LAP_SVG_SFT_FuerBericht.xls \ / \ qry90b_Typenzuordnung_SVG_Export$

ZRH15_5214011975_TYPENZUO.DOC

Beilage 5
Seite 4 von 5

Tabelle 29: Akustische Kenndaten, Typenzuordnung, Start (FT), [RC2012_01]

RC-Тур	RC BEZEICHNUNG	L _{A,max} [dB]	Theta(L _{A,max}) [°]	L _{AE} [dB]	Cutback [dB]	zugeordnete Flugzeugtypen (TYP10)
A320	RCSFTA320	87.7	98.1	95.5	-1.9	A320
A321	RCSFTA321	90.2	98.6	97.6	-2.7	A321
A3302	RCSFTA3302	92.0	101.0	100.2	-3.4	A3302, A3303
A3403	RCSFTA3403	92.1	97.7	99.1	-3	A3403
B73F	RCSFTB73F	90.5	94.1	97.5	-3.1	B7378, B73F
B73S	RCSFTB73S	89.4	97.7	96.5	-1.9	B7377, B73S

 $File: qry 90_Typenzu ordnung_LAP_SVG_SFT_Fuer Bericht.xls \ / \ qry 90c_Typenzu ordnung_SFT_Export$

Beilage zu Bericht-Nr. 5214.011975

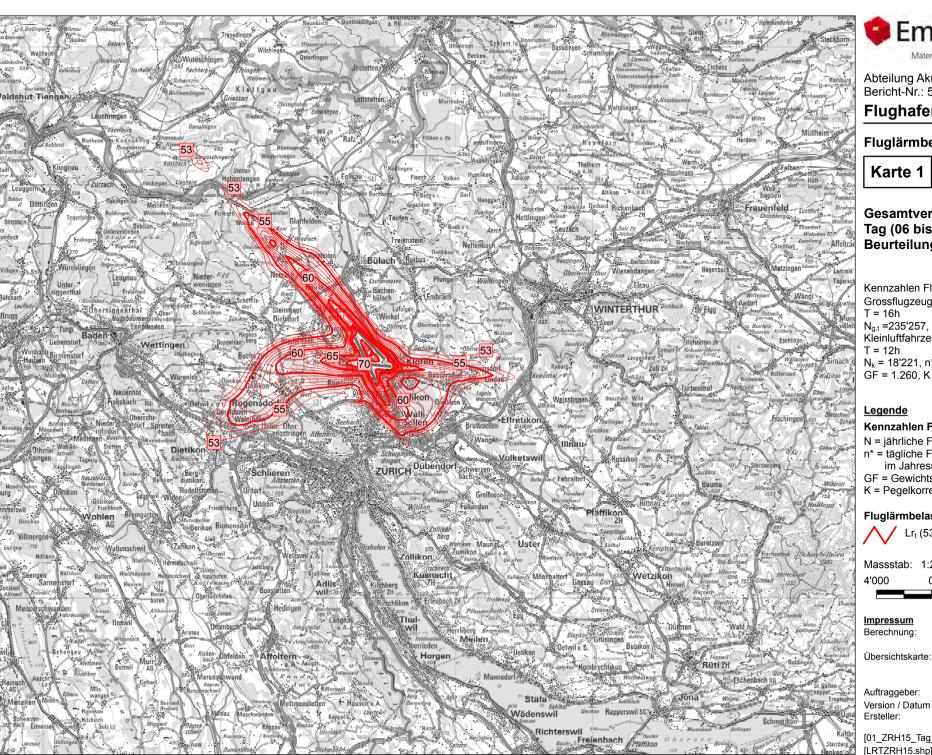
Tabelle 30: Flächen und Anzahl Personen in den GWK (2015 und 2014) [Auswertungen Flughafen Zürich AG]

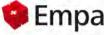
Flächen in ha

						E	SII					
		Tag		1.	Nachtstunde		2.	Nachtstunde		ι	lmhüllende	
	PW	IGW	AW	PW	IGW	AW	PW	IGW	AW	PW	IGW	AW
2015	6'210.3	3'115.0	1'149.3	15'766.9	5'630.7	822.9	21'402.5	12'327.2	1'751.2	28'043.9	14'541.0	2'176.2
2014	6'256.9	3'125.9	1'150.0	16'598.1	5'761.5	874.6	22'204.8	12'523.0	1'767.9	28'839.5	14'847.4	2'210.1
Diff. 2015-2014	-46.6	-10.9	-0.7	-831.2	-130.8	-51.7	-802.4	-195.8	-16.7	-795.7	-306.4	-33.9

ſ							ES	SIII		ESIII														
			Tag		1.	Nachtstunde		2.	Nachtstunde		U	mhüllende												
		PW	IGW	AW	PW	IGW	AW	PW	IGW	AW	PW	IGW	AW											
ſ	2015	3'115.0	1'149.3	461.9	15'766.9	5'630.7	822.9	12'327.2	4'360.5	804.1	19'263.2	6'746.1	1'057.5											
	2014	3'125.9	1'150.0	460.0	16'598.1	5'761.5	874.6	12'523.0	4'454.5	808.9	19'380.0	6'743.7	1'052.6											
	Diff. 2015-2014	-10.9	-0.7	1.9	-831.2	-130.8	-51.7	-195.8	-94.0	-4.8	-116.7	2.4	4.9											

١			ESIV														
			Tag		1.1	Nachtstunde		2.	Nachtstunde		U	lmhüllende					
		PW	IGW	AW	PW	IGW	AW	PW	IGW	AW	PW	IGW	AW				
	2015	1'149.3	461.9	163.9	5'630.7	2'155.5	318.8	4'360.5	1'751.6	315.8	6'746.1	2'437.5	438.6				
	2014	1'150.0	460.0	163.2	5'761.5	2'246.9	349.2	4'454.5	1'767.9	305.5	6'743.7	2'395.3	432.5				
	Diff. 2015-2014	-0.7	1.9	0.8	-130.8	-91.5	-30.5	-94.0	-16.4	10.3	2.4	42.2	6.2				


Betroffene Personen


		ESII													
		Tag		1. Nachtstunde			2. Nachtstunde			Umhüllende					
	PW	IGW	AW	PW	IGW	AW	PW	IGW	AW	PW	IGW	AW			
2015	35'153	13'084	1'482	70'363	19'870	655	73'313	31'667	2'101	114'181	41'607	4'238			
2014	34'593	13'464	1'787	72'225	19'381	408	73'530	29'733	2'273	115'133	42'333	4'160			
Diff. 2015-2014	560	-380	-305	-1'862	489	247	-217	1'934	-172	-952	-726	78			

	ESIII											
	Tag			1. Nachtstunde			2. Nachtstunde			Umhüllende		
	PW	IGW	AW	PW	IGW	AW	PW	IGW	AW	PW	IGW	AW
2015	8'029	918	0	37'302	13'906	672	21'648	5'212	308	41'063	14'371	980
2014	7'455	966	0	36'877	13'205	556	19'601	3'808	341	39'360	13'452	891
Diff. 2015-2014	574	-48	0	425	701	116	2'047	1'404	-33	1'703	919	89

	ESIV											
	Tag			1. Nachtstunde			2. Nachtstunde			Umhüllende		
	PW	IGW	AW	PW	IGW	AW	PW	IGW	AW	PW	IGW	AW
2015	0	0	0	37	1	0	1	1	0	37	1	0
2014	1	0	0	48	0	0	1	0	0	48	0	0
Diff. 2015-2014	-1	0	0	-11	1	0	C) 1	0	-11	1	0

Bevölkerungsdaten: 2015: Jahresendstand 2014; 2014: Jahresendstand 2013

Abteilung Akustik / Lärmminderung Bericht-Nr.: 5214.011975

Flughafen Zürich

Fluglärmbelastung 2015

Karte 1

Gesamtverkehr Tag (06 bis 22 Uhr) Beurteilungspegel Lr.

Kennzahlen Flugbetrieb:

Grossflugzeuge, Tag:

T = 16h

 $N_{a,t} = 235'257$, $n^*_{a,t} = 645$

Kleinluftfahrzeuge:

T = 12h

 $N_{\nu} = 18'221$. $n^*_{\nu} = 50$

GF = 1.260. K = 0.845 dB

Legende

Kennzahlen Flugbetrieb

N = jährliche Flugbewegungszahlen n* = tägliche Flugbewegungszahlen im Jahresmittel

GF = Gewichtsfaktor Spitzenbetrieb

K = Pegelkorrektur

Fluglärmbelastung

Lr_t (53 bis 70 dB)

Massstab: 1:275'000

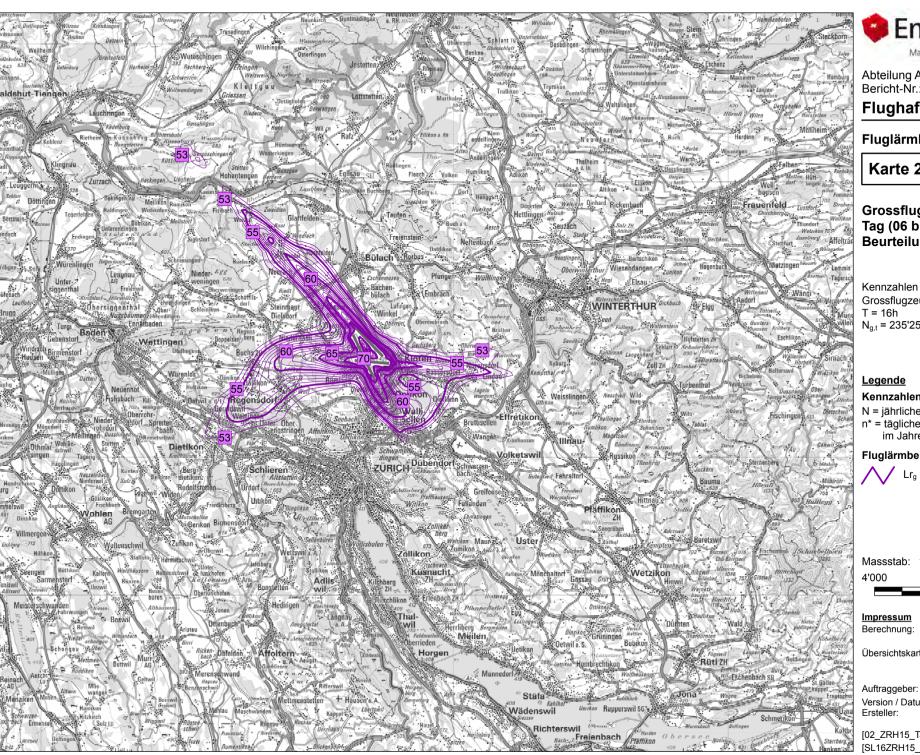
4'000

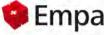
Impressum

Berechnung:

Full-Size-Methode Empa: FLULA2. Version 004

4'000 Meter


PK200: Reproduziert mit Bewilligung von swisstopo


(JA100116)

Version / Datum /

Flughafen Zürich AG 1 / 2016-03-30 / olsc

[01_ZRH15_Tag_Lrt.mxd] [LRTZRH15.shp]

Abteilung Akustik / Lärmminderung Bericht-Nr.: 5214.011975

Flughafen Zürich

Fluglärmbelastung 2015

Karte 2

Grossfluazeuae Tag (06 bis 22 Uhr) Beurteilungspegel Lra

Kennzahlen Flugbetrieb: Grossflugzeuge. Tag: T = 16h $N_{g,t} = 235'257, n^*_{a.t} = 645$

Legende

Kennzahlen Flugbetrieb

N = jährliche Flugbewegungszahlen n* = tägliche Flugbewegungszahlen im Jahresmittel

Fluglärmbelastung

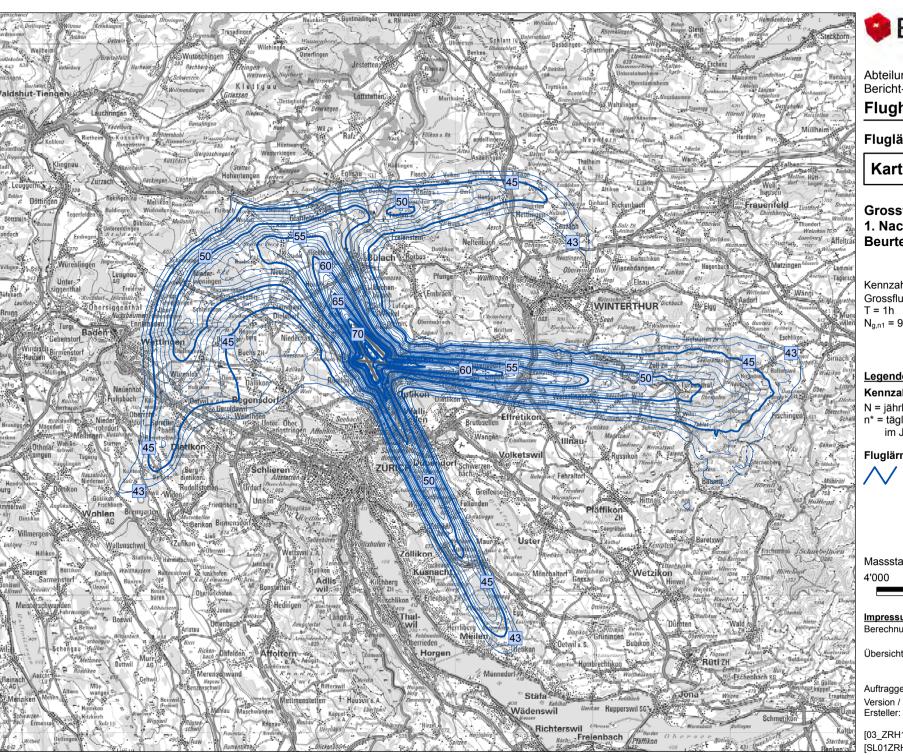
Massstab: 1:275'000

4'000 4'000 Meter

Impressum

Full-Size-Methode Empa: Berechnung:

FLULA2, Version 004


PK200: Reproduziert mit Übersichtskarte: Bewilligung von swisstopo

(JA100116)

Version / Datum / Ersteller:

Flughafen Zürich AG 1 / 2016-03-30 / olsc

[02_ZRH15_Tag_Lrg_V1.mxd] [SL16ZRH15 G8T 06-22.shp]

Abteilung Akustik / Lärmminderung Bericht-Nr.: 5214.011975

Flughafen Zürich

Fluglärmbelastung 2015

Karte 3

Grossfluazeuge

1. Nachtstunde (22 bis 23 Uhr) Beurteilungspegel Lr.

Kennzahlen Flugbetrieb:

Grossflugzeuge, 1. Nachtstunde:

 $N_{a,n1} = 9'230, n^*_{a,n1} = 25$

Legende

Kennzahlen Flugbetrieb

N = jährliche Flugbewegungszahlen n* = tägliche Flugbewegungszahlen im Jahresmittel

Fluglärmbelastung

Massstab: 1:275'000

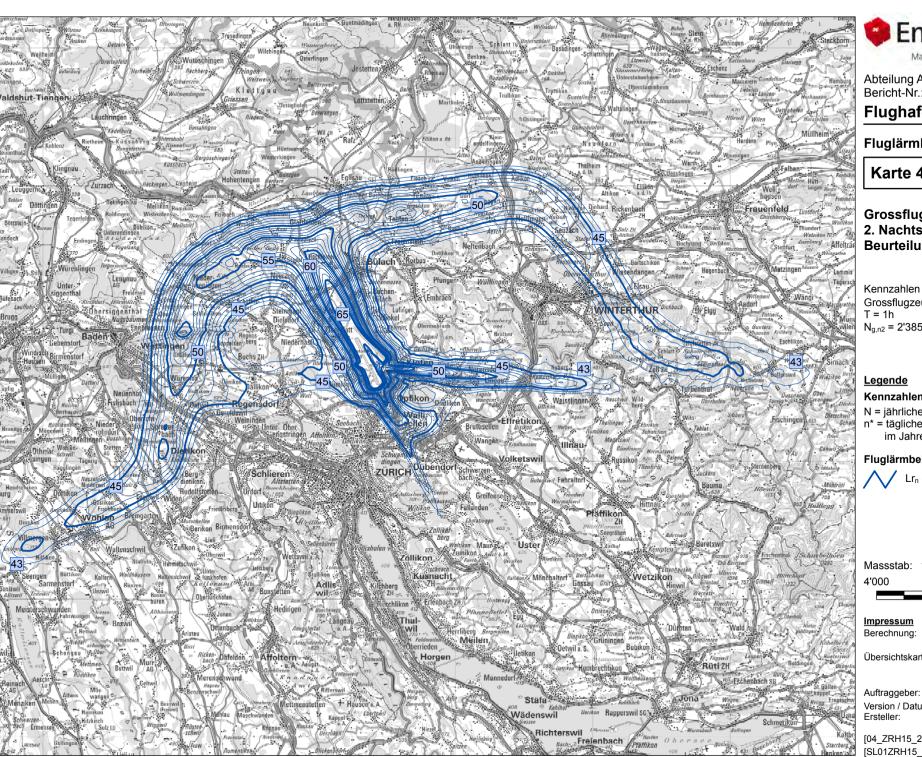
4'000 4'000 Meter

<u>Impressum</u>

Full-Size-Methode Empa: Berechnung:

FLULA2, Version 004

Übersichtskarte: PK200: Reproduziert mit Bewilligung von swisstopo


(JA100116)

Flughafen Zürich AG

Auftraggeber: Version / Datum /

1 / 2016-03-30 / olsc

[03_ZRH15_1NS_Lrn.mxd] [SL01ZRH15 G8T 22-23.shp]

Abteilung Akustik / Lärmminderung Bericht-Nr.: 5214.011975

Flughafen Zürich

Fluglärmbelastung 2015

Karte 4

Grossfluazeuge 2. Nachtstunde (23 bis 24 Uhr) Beurteilungspegel Lr.

Kennzahlen Flugbetrieb: Grossflugzeuge, 2. Nachtstunde:

 $N_{q,n2} = 2'385, n^*_{q,n2} = 7$

Legende

Kennzahlen Flugbetrieb

N = jährliche Flugbewegungszahlen n* = tägliche Flugbewegungszahlen im Jahresmittel

Fluglärmbelastung

Massstab: 1:275'000

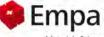
4'000 4'000 Meter

Impressum

Full-Size-Methode Empa: Berechnung:

FLULA2, Version 004

PK200: Reproduziert mit Übersichtskarte: Bewilligung von swisstopo


(JA100116)

Version / Datum / Ersteller:

Flughafen Zürich AG 1 / 2016-03-30 / olsc

[04_ZRH15_2NS_Lrn.mxd] [SL01ZRH15 G8T 23-05.shp]

Abteilung Akustik / Lärmminderung Bericht-Nr.: 5214.011975

Flughafen Zürich

Fluglärmbelastung 2015

Karte 5

Grossflugzeuge Letzte Nachtstunde (05 bis 06 Uhr) Beurteilungspegel Lrn

Kennzahlen Flugbetrieb:

Grossflugzeuge, letzte Nachtstunde:

 $N_{a,n3} = 7$, $n^*_{a,n3} = 0.02$

Legende

Kennzahlen Flugbetrieb

N = jährliche Flugbewegungszahlen n* = tägliche Flugbewegungszahlen im Jahresmittel

Fluglärmbelastung

Massstab: 1:275'000

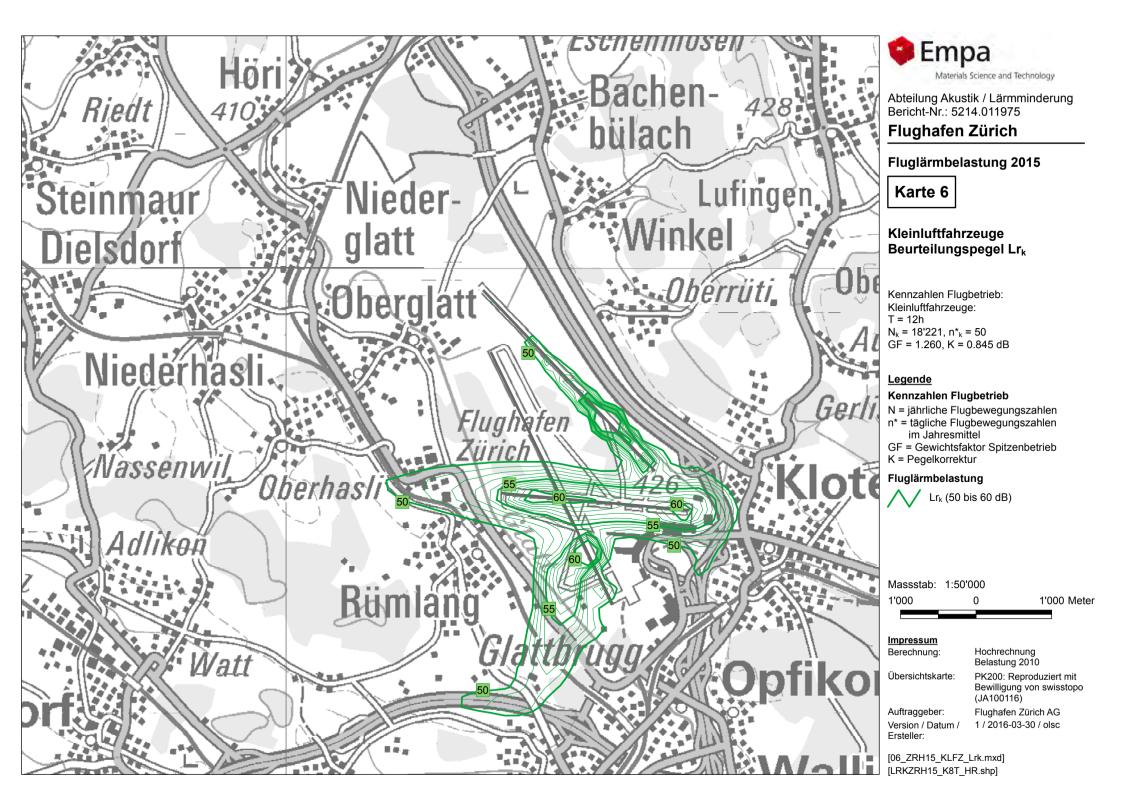
4'000 4'000 Meter

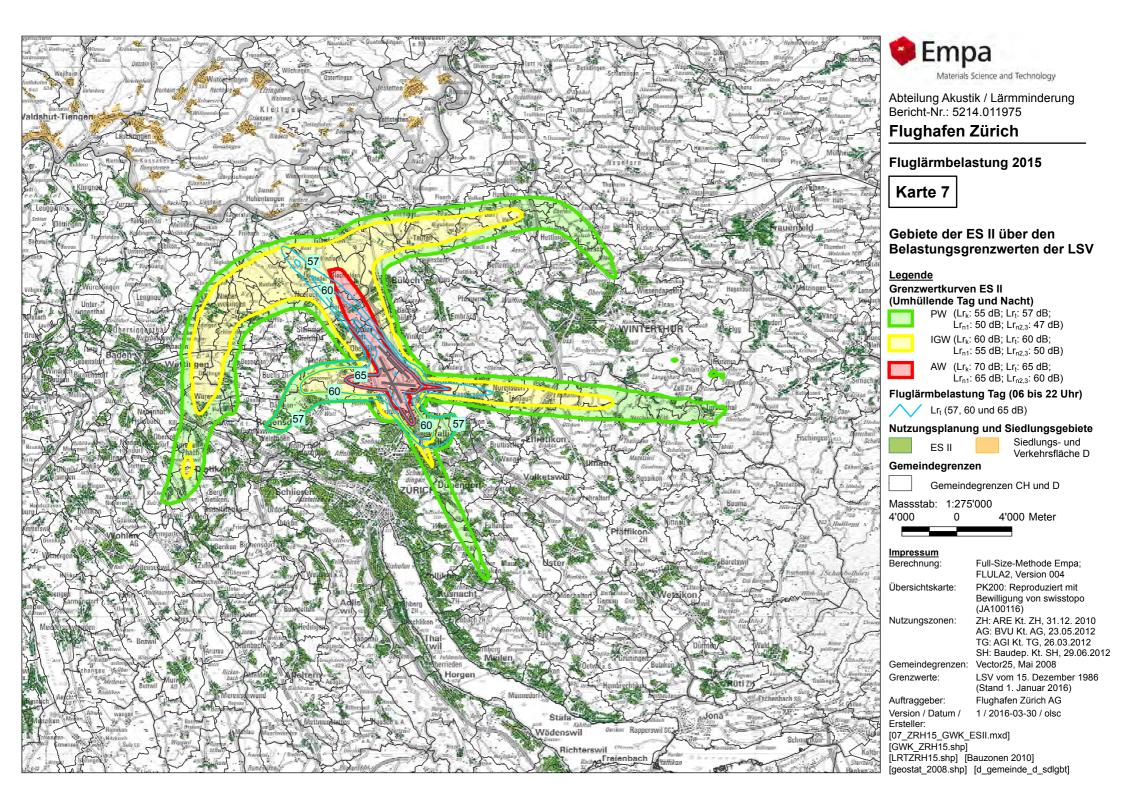
Impressum

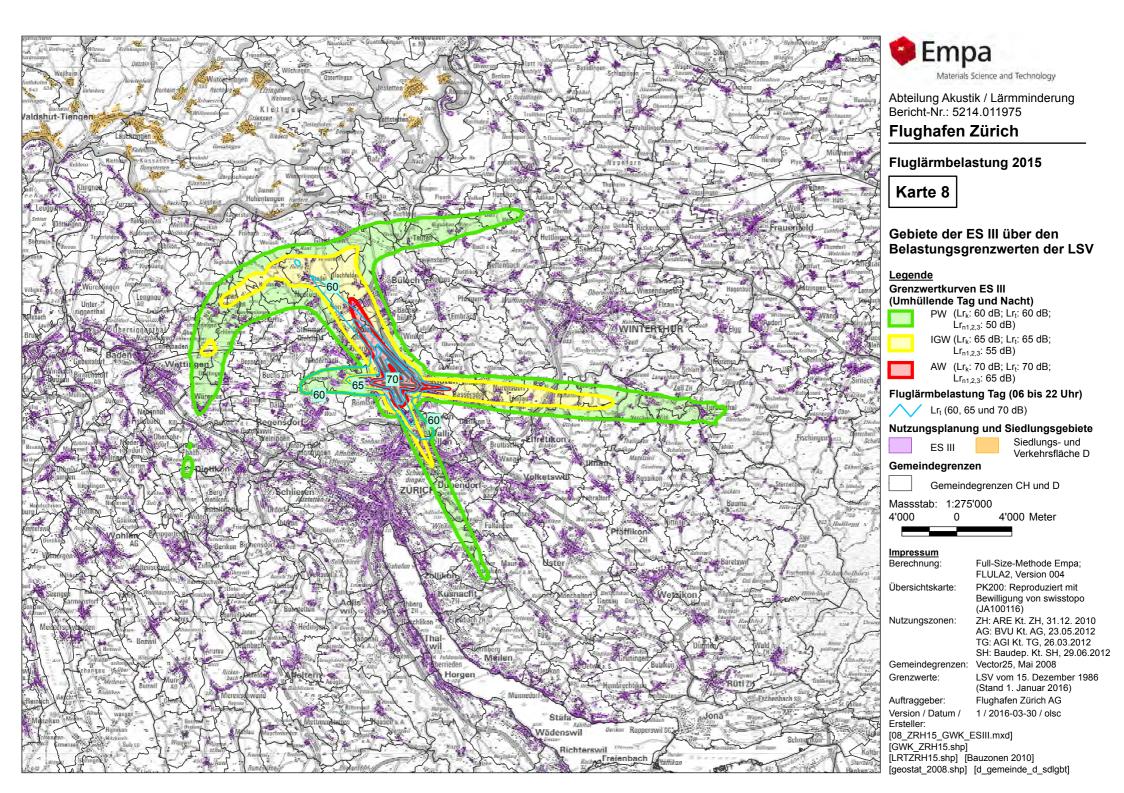
Full-Size-Methode Empa: Berechnung:

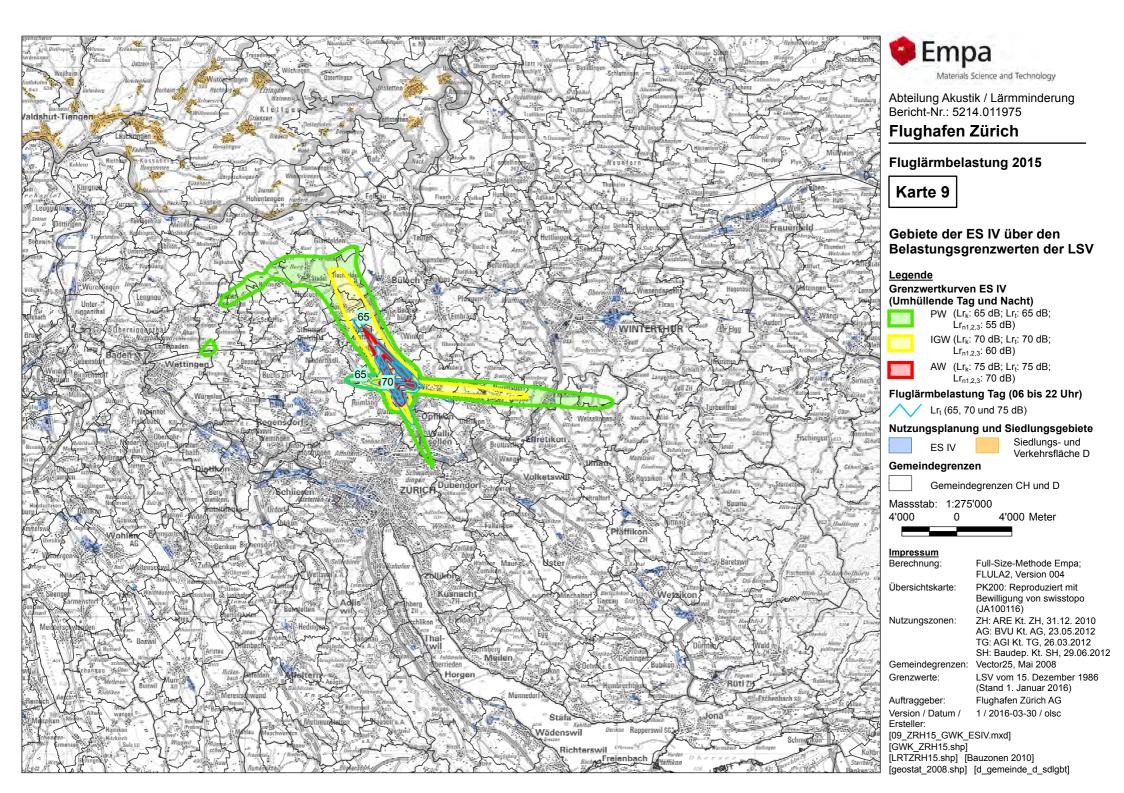
FLULA2, Version 004

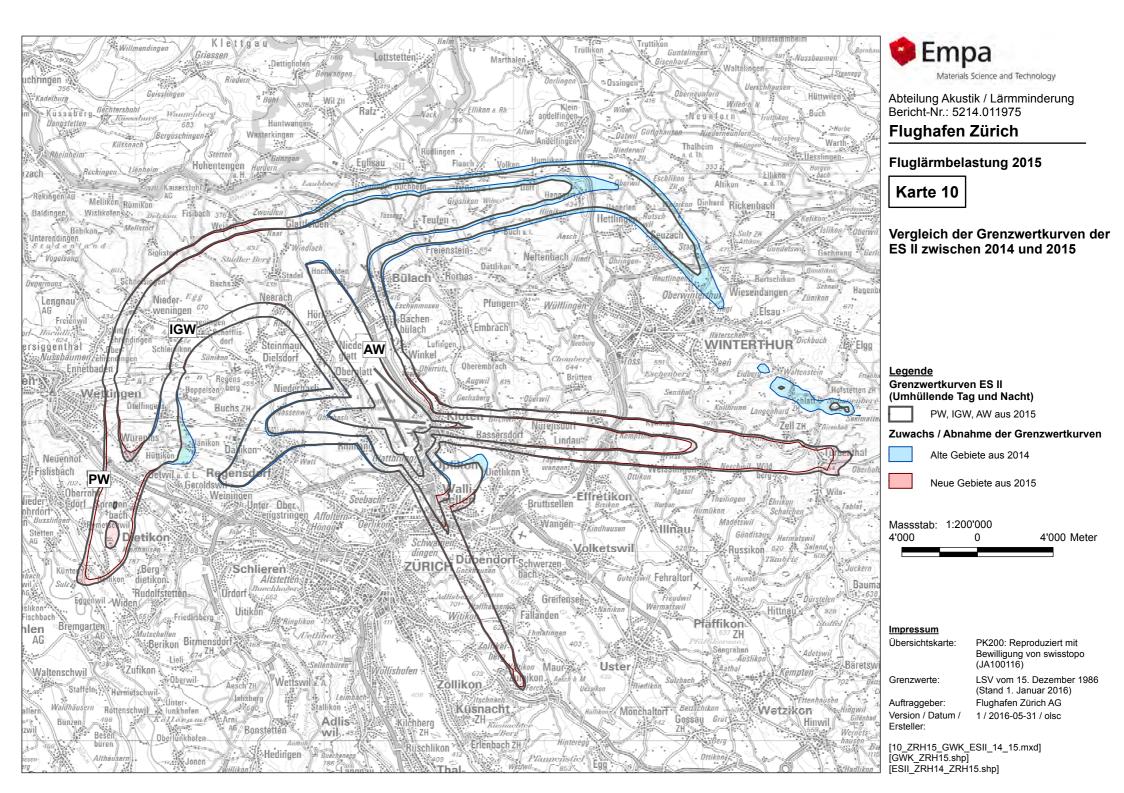
Übersichtskarte: PK200: Reproduziert mit


Bewilligung von swisstopo


(JA100116)


Version / Datum /


Flughafen Zürich AG 1 / 2016-03-30 / olsc


[05_ZRH15_3NS_Lrn.mxd] [SL01ZRH15 G8T 05-06.shp]

